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Abstract Navigating in a fluid flow while being carried by it, using only information accessible from on-
board sensors, is a problem commonly faced by small planktonic organisms. It is also directly relevant
to autonomous robots deployed in the oceans. In the last ten years, the fluid mechanics community has
widely adopted reinforcement learning, often in the form of its simplest implementations, to address this
challenge. But it is unclear how good are the strategies learned by these algorithms. In this paper, we
perform a quantitative assessment of reinforcement learning methods applied to navigation in partially
observable flows. We first introduce a well-posed problem of directional navigation for which a quasi-optimal
policy is known analytically. We then report on the poor performance and robustness of commonly used
algorithms (Q-Learning, Advantage Actor Critic) in flows regularly encountered in the literature: Taylor-
Green vortices, Arnold-Beltrami—Childress flow, and two-dimensional turbulence. We show that they are
vastly surpassed by PPO (Proximal Policy Optimization), a more advanced algorithm that has established
dominance across a wide range of benchmarks in the reinforcement learning community. In particular, our
custom implementation of PPO matches the theoretical quasi-optimal performance in turbulent flow and
does so in a robust manner. Reaching this result required the use of several additional techniques, such as
vectorized environments and generalized advantage estimation, as well as hyperparameter optimization.
This study demonstrates the importance of algorithm selection, implementation details, and fine-tuning

for discovering truly smart autonomous navigation strategies in complex flows.

1 Introduction

The development of artificial microswimmers with nav-
igation capabilities has been an intense topic of research
in recent years [1-3]. When such robots with limited
self-propulsion abilities are carried by a fluid flow, nav-
igation becomes notoriously harder. This is the kind
of challenge faced by robots deployed in the oceans for
environmental monitoring purposes. Ideally, these drift-
ing robots would be able to exploit background currents
to travel more efficiently while relying only on data from
their on-board sensors. The very same problem is also
faced by plankton: these small organisms that drift with
currents may be able to exploit hydrodynamic cues to
migrate efficiently over long distances [4-6].

If the agent had global information about the flow,
optimal control theory could be used to find optimal
trajectories (a problem known as Zermelo’s navigation
problem [7]). But when the agent can only sense the
flow locally (that is, has only access to a partial obser-
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vation), optimal control theory can no longer be used.
This problem becomes a model-free partially observable
Markov decision process (POMDP). Such problems are
usually well-suited for reinforcement learning, a data-
driven alternative to optimal control that allows an
agent to be trained at solving a task through repeated
interactions with its environment.

In the last ten years, navigation in partially observ-
able flows has attracted considerable attention in the
fluid mechanics community [8-26], who adopted rein-
forcement learning techniques to develop “smart” nav-
igation strategies. A variety of problems have been
addressed, often inspired by biology. They include
exploiting the flow to travel more efficiently [9,11-
13,19], maintaining stable collective formations [8,10,
15], catching a passive target [16], reducing chaotic
dispersion [21], or targeting specific regions of the
flow [14,24,25]. In parallel, various physical models of
the agent have been used, ranging from simple self-
propelled point particles to deformable bodies with
fluid-structure interactions (e.g., [15,22]).

A significant part of recent studies still use tabular Q-
Learning, a classic learning algorithm [27] that has long
been superseded by “deep” methods in the reinforce-
ment learning community. A recent paper highlighted
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the limitations of such ‘vanilla’® learning algorithms for
discovering good strategies in complex flows, by show-
ing that none of them could match the performance
of a simple heuristic strategy obtained from physical
intuition [22]. Therefore, the quality (with respect to
optimality) of the learned strategies obtained so far in
various navigation problems is uncertain. Previous work
has shown that vanilla algorithms can find a solution
to various navigation problems. But what does it take
to find a good solution (close to optimality)?

In this paper, we provide a rigorous assessment of
reinforcement learning as a tool to discover naviga-
tion strategies for microswimmers in complex flows.
We compare three algorithms: two are representative
of those used in prior work on smart microswimmers
(Q-Learning [27] and Advantage Actor-Critic [28]), the
last one is one the best modern algorithms for rein-
forcement learning and has demonstrated its capabili-
ties across a wide range of domains (Proximal Policy
Optimization [29]). We benchmark these algorithms on
a simple navigation problem in three different flows
that are representative of those used in prior work:
Taylor-Green vortices, Arnold-Beltrami-Childress flow,
and two-dimensional unsteady turbulence.

Our study reveals that Q-Learning and A2C (Advan-
tage Actor Critic) algorithms, despite being still rou-
tinely used for this purpose, actually perform rather
poorly on navigation in partially observable flows. In
contrast, we show that a custom implementation of
PPO (Proximal Policy Optimization ) allows learning a
policy that matches the near-optimal performance. This
work demonstrates that deep reinforcement learning is
indeed a promising path toward autonomous naviga-
tion in flows, but only at the price of careful algorithm
selection, implementation, and tuning.

The paper is organized as follows. We start in Sect. 2
by defining a well-posed benchmark navigation problem
for which a near-optimal policy is known analytically,
and introduce the three flow environments. In Sect. 3,
we present the reinforcement learning algorithms used
in this paper. In Sect. 4, we report on the performance
and robustness of these algorithms in the three different
flows. We conclude with a summary and discussion in
Sect. 5.

2 Navigation in complex flows

2.1 Statement of the problem

We consider a swimming agent trying to go as far as
possible in the upward 2 direction. This task is repre-
sentative of the diel vertical migration of plankton, and
more generally of long-distance navigation to a target
point (here moved to infinity) without the additional
difficulties associated with sparse rewards.

1 ‘yanilla’ refers to the most basic, textbook implementation
of an algorithm, without the use of any extra technique to
improve on its performance
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The agent is modeled as an inertialess point-like par-
ticle swimming at a constant swimming speed v while
being advected by the surrounding flow w(x,t). For
simplicity, we assume that the agent does not modify
the background flow (one-way coupling), an approxima-
tion valid in the dilute limit as the agent perturbation to
the flow is decreasing as an inverse power law. The agent
can only control its swimming direction p(t), a unit vec-
tor, every At (decision time). The readjustment of its
swimming direction is instantaneous (no reorientation
delay). Under these assumptions, the agent motion is
governed by the following equation:

X(tny1) = X (1) + / (X 1)+ up(t)) dt,

n

X(to) = Xo (1)

where X (t) is the position of the agent at time ¢, u(x, t)
is the flow velocity field (incompressible and with zero
mean flow), and At = ¢"*1 —¢". The agent initial posi-
tion X is randomly initialized in the flow, and the
starting time ¢y is also chosen randomly (when the flow
is unsteady). The agent’s swimming speed v is chosen
as roughly half the typical flow speed (cf. Section 2.4).
This choice ensures that the agent significantly drifts
with the flow, while keeping learning computationally
inexpensive for the purpose of this systematic bench-
mark.

In order to choose its swimming direction p(t) at
best, the agent has access to local flow information
G(X (t),t). This observable is chosen to be the local
velocity gradient tensor Vu (X (t),t) (or a related quan-
tity, depending on the flow considered, cf. Section 2.4).
Indeed only flow gradients, rather than the flow itself,
can be measured by an agent drifting with the flow.

The goal of the agent is to maximize the total dis-
tance traveled along the target direction Z over an
episode of duration T" = ty — ty, and averaged over
all random initial conditions. We denote this metric Z,
formally defined as

Z =< (X(ty) - Xo)- 2 > (2)

where the brackets indicate the average. To summarize,
we are looking for the control (called policy in rein-
forcement learning) p(G) that maximizes the objective
function Z under the dynamics given by Eq. (1).

This problem is simple enough to have a known ana-
lytical approximate solution (cf. next section) while
retaining the complexity inherent to plankton-like nav-
igation. For these reasons, it provides a well-posed
benchmark problem for evaluating the capabilities of
reinforcement learning applied to autonomous naviga-
tion in flows.

2.2 Analytical baselines

Two heuristic policies are considered as baselines: the
naive policy and the surfing policy.
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The naive policy consists in always swimming upward:

pP=2z (3)

resulting in average travelled distance Z = vT. This
naive policy is a weak baseline, representative of base-
lines used in prior work applying vanilla reinforcement
learning algorithms for navigation in flows.

The surfing policy is a recently proposed policy that
has been shown to significantly improve upon the naive
policy [6]. It reads

p=XIAl, A=lexp(T"G)]- 2 (4)
where exp is the matrix exponential. The parameter 7*
has a physical meaning: it quantifies the mean correla-
tion time of G as observed by the agent along its trajec-
tory. For all practical purposes 7* can be seen as a free
parameter of the surfing policy that can be manually
optimized for each flow (cf. Fig. 5). The surfing policy
provides a strong baseline that reinforcement learning
should at least match in order to be considered, in our
view, as a suitable method for autonomous navigation
in flows. Its name comes from its physical interpretation
[6], as the agent ‘surfs’ on beneficial upward currents.

These two heuristics are, respectively, zeroth- and
first-order analytical approximations of the optimal
control for this problem, as obtained from Pontryagin’s
maximum principle. Indeed, our optimization problem
can be reformulated as an ordinary differential equation
for the adjoint A:

dA(t)

— =~ Vu(X(1),1) - A1),

Altp) =2 (5)

which solution is

All) = [exp </Otft Va(X(t+7)t + T)dfﬂ ‘2
(6)

where X (t) is the solution of Eq. (1). In fluid flows,
Vu is generally time-correlated over a finite time 7*.
This allows us to approximate the integral in Eq. (6)
by 7*Vu(X,t). The surfing policy, given by Eq. (4),
immediately follows after replacing Vu by G. Note
that neglecting the existence of correlations in the flow
amounts to setting 7* = 0, which gives the naive policy.

2.3 Flows

We consider three different carrier flows, which are
canonical flows commonly used in fluid mechanics:

Taylor-Green vortices (TGV), Arnold-Beltrami—Childress

flow (ABC), and two-dimensional unsteady turbulence
(TURB). These flows provide training environments
of increasing difficulty and realism, as they exhibit
an increasing number of the key features of real
flows: coherent structures (TGV, ABC, TURB), chaotic
dynamics (ABC, TURB), and unsteadiness (TURB).
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In the following we define these flows using standard
Cartesian coordinates (x,y,z), with z the coordinate of
the target direction.

The TGV flow, illustrated in Fig. 1 (top left), consists
of a lattice of counter-rotating vortices. It is an analyt-
ical steady solution to the 2D Navier-Stokes equations.
It reads:

Uy, = —U cos(z) sin(z),
U sin(z) cos(z)

Uz

where we set U = 0.5. This flow has been used in, e.g.,
Refs [11,19,22].

The ABC flow, illustrated in Fig. 2 (top left), is a 3D
steady flow characterized by coherent tube-like struc-
tures separated by a chaotic region. It is a steady solu-
tion to the three-dimensional Euler equations (a par-
ticular case of the Navier-Stokes equations with zero
viscosity). It reads

u, = Asin(z) + C cos(y),
uy = Bsin(z) + Acos(z),
u, = Csin(y) + B cos(z),

where we set A = \/g, B = /2 and C = 1. Similar
ABC flows have been used in Refs [12,14].

The TURB flow, illustrated in Fig. 3 (top left), is an
unsteady, statistically stationary two-dimensional tur-
bulent flow obtained by numerical simulation of the
Navier-Stokes equations [30]. This multiscale chaotic
flow features moving vortical structures that have a
finite lifetime: they unpredictably appear, evolve and
vanish. We simulated the flow evolution in the direct
cascade regime using a standard pseudo-spectral solver
on 2562 collocation points and a large scale stochastic
forcing. The characteristic flow velocity is tyms = 3.78
and the characteristic time scale of the flow (eddy turn-
over time) is 7, = w = 0.11 with w = V x u the
vorticity. Similar 2D turbulent flows have been used in
Refs [16,31].

All these flows are 27-periodic in all directions: when
the agent is at position X (¢), the flow at this location
is given by u(X (t) mod 27,t).

2.4 Environment parameters

The three flows, together with the agent swimming
speed v, the size of the time step At, the episode dura-
tion 7', and the observable G, define our three environ-
ments. The parameters used are summarized in Table 1.

In TGV, we set v = upmax/2 and an episode consists
of 4000 time steps. The observable is G = Vu. Due to
symmetries, only two components of the velocity gra-
dient are independent: these two components form the
observation given to the agent, making the observation
space two-dimensional.

In ABC, we set v = umax/2 and an episode consists of
2000 time steps. The observable is the anti-symmetric
part of the velocity gradient: G = % (Vu — VuT)7

@ Springer
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Fig. 1 Navigation in Taylor-Green vortices (TGV). The
flow is represented in the upper left corner by showing the
(out-of-plane component of the) vorticity (w = V x u),
along with streamlines. The dashed line represents the ini-
tialization of particles whose trajectories are shown in the
bottom panel, for particles following the naive strategy (left)
and the learned PPO strategy (right). Unlike naive agents
which can be trapped on periodic orbits, PPO agents have

which three independent components are proportional
to the components of vorticity w = V x u. The observa-
tion space is therefore three-dimensional. This choice of
observable is motivated by consistency with prior work
on ABC flow where vorticity was chosen [12]. Note that
in ABC flow, w and u are equal up to a constant. The
same observable G, rather than full velocity gradient
tensor, is also used for the surfing policy in this envi-
ronment.

In TURB, the agent speed is set to v & ums/2, and
an episode consists of 500 time steps (the typical time
scale of the flow 7, is roughly 11 time steps). Turbulent
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learned to escape such trapping and all converge to a sin-
gle trajectory that yields the largest vertical displacement,
independently of their initial location. The PPO policy is
compared to the surfing policy in the upper right corner.
While both tend to diverge from downflow regions (violet)
and converge to upflow regions (orange), PPO does it more
aggressively, with steeper changes of direction

simulation data has been generated for a total duration
of 5000 time steps, split into 4000 for training and 1000
for testing. The initial time step that defines the start of
an episode is chosen randomly in [0, 3500] for training
and [4000, 4500] for testing. The observable is G = Vu.
Due to flow incompressibility, only three components
are independent, making the observation space three-
dimensional.

Note that reducing the observation space to indepen-
dent components is not key: using all the components of
G yields identical results to those presented hereinafter.
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Fig. 2 Navigation in Arnold-Beltrami—Childress flow
(ABC). The ABC flow is represented in the upper left
corner by showing the total distance travelled by pas-
sive tracers advected by the flow (image generated with
LDflow (https://github.com/auroreloisy/ldflow) based on
the LDDS package [37]). Such quantity, called Lagrangian
descriptor [38], highlights flow regions with qualitatively dif-
ferent dynamics. This flow contains many coherent tube-like
structure (light yellow) where tracers tend to cover large
distances, these areas are also associated with preferential
directions. They are separated by a chaotic region (dark
red). In the bottom panels where trajectories are shown,

3 Reinforcement learning methods

In the language of reinforcement learning and related
domains, our navigation problem is a partially observ-
able Markov decision process (POMDP). The agent has
only access to an observation o (G at its position) of the
underlying state s of the environment (the entire flow
and the agent’s position). The action a is the agent’s
swimming direction p, and the reward r is the distance
traveled in the target direction between two successive
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agents are initialized at the z = 0 plane, following the

naive strategy (left) and the PPO strategy (right). PPO
agents have learned to converge to a particular flow struc-
ture, characterized by large upward transport. In the upper
right corner, the surfing and PPO policies are projected onto
a horizontal plane. The beneficial (detrimental) coherent
structures are visible in the background: the orange (purple)
one is associated to large upward (downward) displacement
of passive tracers. Compared to surfing, PPO orients more
aggressively toward the orange structure, which explains its
overall superior performance

time steps. Table 2 maps standard POMDP variables
to the corresponding navigation variables. As is usual
in reinforcement learning, we apply learning algorithms
designed for MDP to our POMDP, assimilating the
state to the observable, although there is no guaran-
tee anymore that these algorithms will converge to the
optimum policy. In the following, we introduce the three
algorithms considered in this work: Q-Learning, A2C
(Advantage Actor Critic), and PPO (Proximal Policy
Optimization).
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Fig. 3 Navigation in a two-dimensional turbulent flow
(TURB). A snapshot of the time-dependent turbulence sim-
ulation is represented in the upper left: the (out-of-plane)
vorticity is shown in the background, along with the stream-
lines. The snapshot corresponds to a randomly chosen time
t = to at which agents are initialized on the dashed line,
their trajectories are shown in the bottom panel. Compared
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to the naive strategy (bottom left), the PPO strategy (bot-
tom right) yields trajectories that tend to clump together
to benefit from upward flow. This is visible in the policy
representation (top right), where PPO is compared to surf-
ing: both tend to diverge from downflow regions (violet)
and converge to upflow regions (orange). While not strictly
identical, these two policies are very similar to each other

Table 1 Parameters of the three environments: agent speed v, characteristic flow velocity u (max value for TGV and
ABC, root-mean-square value for TURB), decision time step At, duration of an episode T, observable G, optimal value of

the parameter 7 of the surfing policy.

environment v u At T G T
TGV 0.25 0.50 0.01 40.0 {02z, Ozus} 2.0
ABC L5 3.0 0.01 20.0 {wa, wy, ws} 0.72
TURB 2.0 3.78 0.01 5.0 {02z, Opuz, Oty } 0.23
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Table 2 POMDP framework applied to autonomous nav-
igation

POMDP variable navigation variable

Sn {X (tn), u(X,t)Vt}
an ﬁ(tn)

on G(X (tn),tn)

ry [X (tng1) — X ()] - 2

Q-Learning is a value-based method, where the state-
action value function (or ‘Q-function’) is estimated and
the policy is derived directly from it. It is an off-
policy algorithm: the policy used to sample the envi-
ronment is different from the learned policy (in prac-
tice, an e-greedy version of the learned policy is used
for sampling). In classical Q-Learning, the Q-function
is a table, meaning that observations and actions must
be discrete. To use this algorithm, we discretize every
component of the observation vector o by categorizing
each of them into three possible bins such that one third
of the data sampled from each environment belongs to
each bin. The actions are discretized into the four (six)
Cartesian directions in 2D (3D), that is, £2 and the two
(four) orthogonal directions. Using finer or coarser dis-
cretizations may affect the results, but our Q-Learning
experiments are only intended to reproduce prior work,
and similar discretizations were used in [11,12,16,19-
21]. We use an optimistic initialization of the Q-matrix
to enhance exploration, this significantly improved the
results compared to an initialization with zeros.

A2C is an actor-critic method: it combines policy-

based methods (actor) and value-based methods (critic).

Its name stems from the fact that the critic estimates
the advantage function, rather than the state-action
value function. It is an on-policy algorithm: the learned
policy is used to sample the environment. The actor
and critic are feedforward neural networks (see Table
4), which enable us to use continuous observation and
action spaces. The output of the actor is not a Gaus-
sian distribution as in most implementations, but a von
Mises-Fisher distribution to appropriately represent the
orientation of the agent (in 2D or 3D). The actor net-
work is initialized such that initially, the output dis-
tribution is close to uniform. The main reference used
in the implementation of A2C is the classical book of
Sutton and Barto [32].

PPO also belongs to the actor-critic on-policy family
of algorithms. Compared to A2C, it comes with multi-
ple additional techniques to improve sample efficiency,
learning stability, and thereby overall performance. In
our implementation, which is inspired by implemen-
tations in Refs [33-35], we use policy loss clipping,
vectorized architecture, generalized advantage estima-
tion, advantage normalization, observation normaliza-
tion, and training on fixed-length trajectory segments.
The actor and critic networks are identical to those used
for A2C.
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For each environment and algorithm, we train ten
times (ten random seeds) over 10° episodes. In the
TURB environment, we use 80% of the simulation
time for training, and the remaining 20% for testing
(assessing the performance of the agent in unseen flow).
Hyperparameters for each algorithm were tuned manu-
ally to achieve best performance. This tuning is essen-
tial as performance is highly sensitive to some of these
hyperparameters. This is the case, for example, of the
learning rates but also of the parameters related to gen-
eralized advantage estimation [36] (used in PPO). The
hyperparameters we used are reported in Table 5.

4 Results

The agent’s goal is to travel as far as possible in the
vertical direction, by taking advantage of the partially
observed carrier flow. Its performance is measured by
Z, the vertical distance travelled over the course of an
episode, averaged over all possible random initial con-
ditions (Eq. 2). In the following, we will present the
agent performance rescaled by the naive performance:
Z | Znaive = Z/(VT).

4.1 Robustness over training trials

Figure 4 shows the beginning of the learning curves
(over 10° episodes) of ten trials for each environment
and algorithm. These learning curves allow us to assess
the robustness of each algorithm. By robustness, we
refer here to how repeatable are the training experi-
ments.

Q-Learning has the largest variance across training
trials. In both ABC and TURB, a single trial out-
performed all the other ones. Therefore, the perfor-
mance of the best agent is not easily reproducible, and
strongly depends on a ‘lucky’ random seed. In general,
Q-Learning learns fast, but it is very unstable. It often
unlearns good strategies as shown by sudden decreases
in performance.

A2C is found to be robust in TURB, but results were
less reproducible in the other environments. While final
performances are similar (with the exception of one
trial in TGV where the agent did not learn anything),
learning curves deviate strongly from one another. A2C
tends to converge much more slowly than the other
algorithms. This is due to the fact that both the actor
and critic networks need to have small learning rates to
ensure stability for this algorithm. The learning rates
we used (cf. Table 5) are the largest ones allowing stable
convergence.

In all the flows considered, PPO robustly reaches the
same performance with very little variance across tri-
als, compared to the other algorithms. In general, PPO
converges quickly to the final solution. This is because
PPO can handle high learning rates for both the actor
and the critic networks, as well as training over mul-
tiple epochs because the updated policy is guaranteed
not to differ too much from the original one.
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Fig. 4 Learning curves for each algorithm (columns) in
each environment (rows): performance (distance traveled in
the vertical direction normalized by vT) as a function of
the number of episodes used for training. The performance
of the naive policy is shown by a black line. To smooth out

Episode

large episode-to-episode fluctuations and enhance readabil-
ity, we use a moving averaging window of 1000 episodes.
Only the first 10° episodes are shown, training is continued
over a total of 10° episodes before evaluating performance
in Table 3

Table 3 Performance of the best learned policies (with 95% confidence intervals) in the three flow environments. The
performance is defined as the average vertical distance traveled in an episode, normalized by the same quantity for the

naive agent

PPO A2C QL Surfing Discrete Surfing Naive
TGV 1.62 + 0.01 1.13 £ 0.01 1.22 + 0.01 1.48 £ 0.01 1.47 + 0.01 1.00 £ 0.01
ABC 2.35 £ 0.03 2.32 £ 0.03 1.9 £ 0.03 2.08 £+ 0.03 2.01 £+ 0.03 1.00 + 0.03
TURB 1.51 £ 0.01 1.20 £ 0.01 1.17 £ 0.01 1.51 £+ 0.01 1.39 £ 0.01 1.00 £ 0.01

4.2 Performance of trained agents

Table 3 shows the performance of each algorithm in
each environment. It is used to assess the ability of
algorithms to discover good strategies in various flows.
We selected the best agent for evaluation, that is, the
one that achieved the highest performance at any point
during training. Therefore, performance collapse during
training does not affect this evaluation. In the TURB
environment, we use the 20% portion of the simulation
that was not used in learning to evaluate the perfor-
mance.

@ Springer

The evaluation was done using the deterministic ver-
sion of the policies. For Q-Learning, the action chosen
is the one corresponding to the highest Q-value. For
A2C and PPO, instead of sampling from the von Mises-
Fisher distribution that the network has converged to,
we choose the action corresponding to the mean value
of the distribution. Although not justified theoretically,
this is common practice, and we found that the deter-
ministic versions of the policies yield slightly better per-
formance than the stochastic versions. Note that with
PPO, the policies have essentially converged to deter-
ministic ones, while this is not the case for A2C.
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PPO is unambiguously the best-performing algo-
rithm in all flow environments. It is the only algorithm
able to outperform or match the performance of the
surfing policy, our challenging baseline derived analyt-
ically, in all flows. In contrast, the strategies learned
by A2C are far from optimal, except in ABC flow. As
both PPO and A2C are actor-critic algorithms with
identical networks, this performance gap illustrates the
importance of using additional techniques (as in PPO)
on top of vanilla algorithms (like A2C).

Q-Learning manages to learn better-than-naive strate-
gies, as reported in most prior studies on microswim-
mer navigation. However, we are able to show here that
these learned strategies are vastly suboptimal. Since
Q-Learning requires discrete sets of observations and
actions, we evaluated the surfing policy constrained to
the same set of discrete actions (while keeping continu-
ous observations, as discretizing observations would not
make sense). Results are reported under ‘Discrete Surf-
ing’ in Table 3, and show that, in all flows, Q-Learning
is unable to learn a policy that matches this discrete
version of the quasi-optimal strategy.

4.3 Interpretation of the strategies learned with
PPO

We now comment on the best strategies learned for each
flow, which have been obtained with the PPO algo-
rithm.

In TGV (Fig. 1), naive swimmers can be trapped
on periodic orbits. The occurrence of trapping, and
therefore the performance of the naive agent in a given
episode, is entirely determined by its initial position
in the flow. In contrast, PPO agents forget their ini-
tial positions: they all converge to a single trajectory,
the one that yields the largest vertical displacement
by the background flow. This behaviour also prevents
them from being trapped. The PPO policy and the
surfing policy are similar: both diverge from downflow
regions and converge to upflow regions. PPO does it
more aggressively, with steeper changes of direction,
resulting its slightly higher performance. We remark
that, unlike surfing, the PPO policy is not symmet-
ric with respect to symmetric inputs; this is common in
reinforcement learning when no additional technique is
used to enforce symmetries.

In ABC (Fig. 2), there exists a tube-like structure
where passive tracers are trapped and are transported
upward at a rapid rate (this structure is essentially an
‘elevator’ [12]). Therefore, the best strategy is to get
into this structure as quickly as possible from the ini-
tial position, and then get essentially carried by the
upward flow. This is exactly what the PPO agent has
learned to do, and its higher performance compared to
other agents is directly related to its ability to reach
this structure faster than all the other strategies, on
average.

In TURB (Fig. 3), the agent needs to find and stay
in regions with upward flow, without overfitting to the
specific flow used for training since flow structures are
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random and transient. The policy learned by PPO is
very similar to the analytically derived one (surfing),
though not identical. To interpret this difference, we
trained an agent acting according to a generalized ver-
sion of the surfing policy, where the parameter 7* is an
unknown function (represented by a neural network)
of the input G, rather than a constant. The learned
7*(G) varies significantly with the input values, yet
the performance of this agent at the task is identical
to that of the original surfing policy (and that of the
PPO agent). Furthermore, we found that the policy of
this generalized-surfing agent is essentially identical to
that of the PPO agent. In conclusion, PPO has learned
a generalized version of surfing, with a variable param-
eter 7%. We speculate that there is a family of functions
7*(G) that perform as well as surfing in turbulent flows.

5 Conclusions

We have introduced a POMDP that models a naviga-
tion task relevant to robotic microswimmers and plank-
tonic organisms. Despite its apparent simplicity, this
task is challenging because it combines complex (possi-
bly chaotic) state dynamics with partial observability.
It is nevertheless well-posed mathematically and comes
with a near-optimal analytical solution. It is there-
fore particularly well suited as a benchmark problem
for a quantitative evaluation of reinforcement learning
algorithms applied to navigation in partially observable
flows.

We have implemented A2C and Q-Learning with sim-
ilar features as in prior studies on navigation in flows,
and shown that these algorithms perform poorly on this
benchmark. In contrast, our custom implementation of
PPO robustly achieves near-optimal theoretical per-
formance. The satisfactory performance obtained with
PPO is encouraging regarding the ability of reinforce-
ment learning to discover and fully exploit flow features
without having direct knowledge of them. We expect
this version of PPO to be a good starting point for
solving more challenging navigation tasks in partially
observable flows (e.g., agents with memory).

These results highlight the importance of algorithm
selection and implementation details when applying
reinforcement learning to such navigation problems. We
hope that these choices will be discussed more in the
future, and that our study will encourage more quanti-
tative assessments and comparisons. This could be done
by comparing the performance obtained with various
algorithms or by developing challenging heuristics as
baselines.

The turbulent flow simulation considered here was
modest to make this systematic benchmark feasible.
Learning in very turbulent 2D flows and in 3D turbulent
flows remains an open challenge. Analytical heuristics
such as the surfing policy [6] or its recent generaliza-
tions [39,40] provide strong baselines to which learned
strategies should be compared to. As the cost of run-
ning the environment increases, PPO may become inef-
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ficient. Off-policy algorithms, such as SAC (Soft Actor
Critic [41]) and TD3 (Twin-Delayed Deep Determin-
istic policy gradient [42]) should be considered and
benchmarked for such problems where sample efficiency
is likely to be of critical importance.

Partial observability is sometimes counteracted by
providing the agent with some form of memory. While
memory is unnecessary for the navigation task consid-
ered here, it is crucial to other navigation problems
such as olfactory search in turbulent flows [43-47], a
much harder problem on which reinforcement learn-
ing has started to be used [48-50]. It remains to be
shown whether model-free, deep reinforcement learn-
ing is a viable tool for discovering good strategies in
such memory-based navigation tasks in the presence of
a realistic turbulent flow.
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Appendix A Parameters used for the
surfing policy, the actor-critic neural
networks, and the reinforcement learning
algorithms

See Fig. 5, Table 4 and 5.
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Fig. 5 Surfing policy: optimization over 7 in the different flows. In TGV 7% = 2.0, in ABC 7* = 0.72, and in TURB

7" =0.23

Table 4 Parameters of the actor and critic neural net-
works, used in both A2C and PPO. The two networks are

independent (no shared layer).

Actor network

Number of hidden layers
Neurons per hidden layer
Type of layers
Initialization

Activation

Use feature normalization
Optimizer

Output distribution

2

40

Dense
Glorot-uniform
ELU

True

Adam

von Mises-Fisher

Table 5 Hyperparameters used for the learning algorithms

Hyperparameter of QL

TGV ABC

TURB

Learning rate

Anneal learning rates

Epsilon (for e-greedy exploration)
Discount factor

0.8 0.8 0.8
True True True

0.1

0.1 0.1

095 095 0.99

Hyperparameter of A2C

TGV ABC

TURB

Learning rate actor
Learning rate critic
Anneal learning rates
Discount factor

107 107¢ 107
10°* 107* 107*
False False False
0.95 0.99 0.99

Critic network

Hyperparameter of PPO

TGV ABC

TURB

Number of hidden layers
Neurons per hidden layer
Type of layers
Initialization

Activation

Use feature normalization
Optimizer

2

100

Dense
Glorot-uniform
ELU

True

Adam

Learning rate actor
Learning rate critic
Anneal learning rates
Discount factor
Number of parallel environments
Rollout length

GAE lambda

Number of minibatches
Epochs

Clip coefficient
Entropy coefficient
Target KL divergence

1007* 107* 107*
107 107 1073
True  True True
0.99 0.99 0.99
100 10 10

10 10 100
1.0 1.0 1.0
5 5 5
4 4 4
0.1 0.1 0.1

0.0 0.0 0.0
0.02 0.02  0.02
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