
Eur. Phys. J. E (2023) 46:17
https://doi.org/10.1140/epje/s10189-023-00277-8

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Flowing Matter

Deep reinforcement learning for the olfactory search
POMDP: a quantitative benchmark
Aurore Loisy1,a and Robin A. Heinonen2,b

1 Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France
2 Department of Physics and INFN, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy

Received 31 January 2023 / Accepted 5 March 2023
© The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany,
part of Springer Nature 2023

Abstract The olfactory search POMDP (partially observable Markov decision process) is a sequential
decision-making problem designed to mimic the task faced by insects searching for a source of odor in
turbulence, and its solutions have applications to sniffer robots. As exact solutions are out of reach, the
challenge consists in finding the best possible approximate solutions while keeping the computational cost
reasonable. We provide a quantitative benchmarking of a solver based on deep reinforcement learning
against traditional POMDP approximate solvers. We show that deep reinforcement learning is a competi-
tive alternative to standard methods, in particular to generate lightweight policies suitable for robots.

1 Introduction

Partially observable Markov decision processes (POMD
Ps) provide an elegant mathematical framework to
model decision making in the face of uncertainty [1–
3]. They generalize MDPs (Markov decision processes)
to situations where the agent has only access to partial
information about the state of the world, for example,
through sensors. In real life, partial observability is the
rule rather than the exception, and an important appli-
cation of POMDPs is robot navigation [4,5].

The olfactory search POMDP is a navigation prob-
lem where the agent must find a source of odor in a tur-
bulent flow using information provided by odor detec-
tion events [6]. This task is faced by insects searching for
food or mates using their sense of smell [7–9], but also
by sniffer robots used to locate gas leaks, land mines
and explosives [10]. Far from a toy problem, the olfac-
tory search POMDP reproduces the key features of odor
detection in turbulence: sparsity and stochasticity [11].
It can be used to assess and compare possible search
strategies [12] before implementing them in real robots
[13–15]. It also provides a tool to interpret the behavior
of olfactory animals [16,17].

The POMDP framework rigorously models uncer-
tainty that arises from partial observability. It allows

a e-mail: aurore.loisy@irphe.univ-mrs.fr (corresponding
author)

b e-mail: robin@physics.ucsd.edu (corresponding author)

the agent to compute a probability distribution over
possible states of the world (possible source locations)
and to update it as new sensory information (odor
detections) arrives. This probability distribution, called
the belief, is a sufficient statistic of the entire agent’s
history and completely describes the current uncer-
tainty about the true state of the world (the true
source location). Solving the POMDP means comput-
ing the optimal action to take as a function of the belief.
This solution optimally balances exploration (acting to
gain more information about the source location) and
exploitation (acting to get closer to the current estimate
of the source location).

The price to pay for this careful quantification of
uncertainty is computational complexity. Finding the
optimal strategy for a POMDP requires to solve a
nonlinear functional equation, called the Bellman opti-
mality equation, on the space of beliefs. This problem
is computationally intractable and one must rely on
approximate solvers [18,19]. Most popular solvers are
“point-based” and compute the solution by performing
value iteration over a subset of beliefs [20,21]. A differ-
ent approach was recently proposed in [12], where deep
reinforcement learning techniques were adapted to the
POMDP framework and applied to the olfactory search
problem. While this approach was novel, it has not been
compared to well-established techniques, which are also
able to obtain good approximate solutions for this prob-
lem [22].

In this paper, we benchmark deep reinforcement
learning against standard point-based solvers on the
olfactory search POMDP. The POMDP and its (for-
mal) optimal solution are described in Sect. 2. The rein-
forcement learning approach to POMDP is presented in

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epje/s10189-023-00277-8&domain=pdf
http://orcid.org/0000-0002-8089-8636
http://orcid.org/0000-0003-0354-7928
mailto:aurore.loisy@irphe.univ-mrs.fr
mailto:robin@physics.ucsd.edu

 17 Page 2 of 14 Eur. Phys. J. E (2023) 46:17

Sect. 3 and contrasted with existing point-based solvers.
The benchmark methodologies and results are detailed
in Sect. 4. Conclusions are drawn in Sect. 5.

2 The olfactory search POMDP

The olfactory search problem, illustrated in Fig. 1, is a
POMDP in which the agent must find a source of odor
hidden in a 2D Cartesian grid. At each step, the agent
moves to one of the four adjacent cells. If the source is
located in this cell, the search is over. Otherwise, the
agent receives a stochastic sensor measurement in the
form of “hits”. Hits represent odor particles detected
by the agent. Their likelihood depends on the position
of the agent with respect to the source. Therefore, hits
provide noisy information about the source location.
The search continues until the agent enters the cell con-
taining the source. We assume that the agent has a
perfect memory and a perfect knowledge of the process
that generates hits. The goal is to determine the strat-
egy that the agent should follow in order to minimize
the expected number of steps to find the source.

We now formally define this problem in the language
of POMDPs. The state s is defined as the relative posi-
tion of the agent with respect to the source and belongs
to the set S built from all possible combinations of the
source’s and the agent’s positions within a finite-size
grid. The special state sΩ = 0 is the terminal state
where the agent is located in the cell containing the
source. The action a is a move by the agent and belongs
to the set A ={“north,” “south,” “east,” “west”}. As
the agent executes an action a, it transitions determin-
istically to a new state s, receives a reward r = −1, and
makes an observation o. Possible observations belong
to the set O = {Ω, 0, 1, 2, . . . , hmax}. If s = sΩ, the
source is found: the agent receives the special obser-
vation o = Ω and the search terminates. If s �= sΩ,

the agent receives an observation o = h where h ∈
{0, 1, 2, . . . , hmax} is a number of hits (the maximum
number of hits hmax will be specified later on). Hits
represent odor detections and occur with conditional
probability Pr(h |s), which is constructed from a physi-
cal model of odor dispersion and detection in turbulence
[6] (cf. Appendix A).

The agent does not have access to its current state.
Instead, it maintains a probability distribution over S,
called belief and denoted b(s), as an estimate of its
state. At each step, after making an observation o, the
belief is updated from b to b′ using Bayes’ rule

b′(s) =
Pr(o |s)b(s)∑

s∈S
Pr(o |s)b(s)

. (1)

This update can made more explicit depending on the
nature of the observation. If o = Ω, the source is found
and the update then yields b′(s) = δ(sΩ). We denote
this special belief bΩ. Otherwise, o = h and

b′(s) =
Pr(h |s)b(s)∑

s∈S
Pr(h |s)b(s)

∀s �= sΩ (2)

with b′(sΩ) = 0, where Pr(h |s) is given in Appendix A.
The belief summarizes all the information brought by

past observations and actions. It is a sufficient statistic
over the agent’s history: we can reason equally about
beliefs as about agent histories without loss of infor-
mation. The initial belief, b0, is called the “prior” in
the language of Bayesian probabilities and is some-
what arbitrary. Here, b0 is drawn from a set of initial
beliefs B0. This set is generated by assuming that the
search starts with a detection (h > 0) in an infinite
domain with a uniform source distribution. The moti-
vation behind this initialization procedure is that the

Fig. 1 Illustration of the olfactory search POMDP. In this
POMDP, the agent must find a source of odor randomly
hidden in a grid. At each step, the agent moves to a neigh-
bor cell (action). It sniffs the air and has a small random
chance of detecting an odor (observation). The closer it is
to the source, the higher is the probability of detection. The
search terminates when the agent enters the cell contain-

ing the source. The model used to generate odor detec-
tions (called “hits”) is known, so the agent can maintain
a belief (probability distribution over possible source loca-
tions) using Bayesian inference. We seek the policy (map-
ping from beliefs to actions) that minimizes the expected
search duration

123

Eur. Phys. J. E (2023) 46:17 Page 3 of 14 17

start of the search is not arbitrary, but is triggered at
the instant when the agent is informed that there is
source (as opposed to nothing) in the neighborhood.
It also drastically reduces artificial effects due to the
finite size of the search domain. The details of the ini-
tialization protocol are provided in Appendix B.1 and
[12].

The search proceeds as follows:

• Initially

– The initial belief b0 is drawn randomly from B0.
– The state s0 is drawn randomly from the distri-

bution b0.

• At the tth step of the search

1. The agent chooses an action according to some
policy π: at+1 = π(bt).

2. The agent moves deterministically to the neigh-
bor cell associated with at+1. This move is asso-
ciated with a negative unit reward: rt+1 = −1.
The state is updated to st+1.

3. The agent makes an observation ot+1 and the
belief is updated to bt+1.

– If bt+1 = bΩ (meaning that ot+1 = Ω and
st+1 = sΩ), the source is found and the
search terminates.

– Otherwise, the search continues to step t+1.

Each search (called an episode) is a sequence like this:

b0, a1, r1, s1, o1, b1, a2, r2, s2, o2, b2, . . . ,

bT−1, aT , rT , sΩ,Ω, bΩ.

The cumulative reward of an episode is equal to minus
the number of steps T to termination:

∑T
t=1 rt = −T .

The agent’s behavior is controlled by the policy,
denoted π, which maps each belief to an action: a =
π(b). The performance of a policy π is measured by
Eπ[T], the expected number of steps to reach the source.
The expectation is taken over all possible sequences
generated following policy π starting from all possible
initial states s0. Solving the POMDP means finding the
optimal policy π∗ that minimizes the expected duration
of the search

π∗ = argmin
π

Eπ[T]. (3)

The optimal policy can, at least formally, be determined
from the solution of a recurrence equation known as the
Bellman optimality equation as follows.

The optimal value function v∗(b) of a belief b is
defined as the maximum, over all policies, of the
expected cumulated reward when starting from this
belief b. Here, the reward is a simple unit penalty at
each step, so v∗(b) is equal to the expected number of
steps remaining to find the source up to a minus sign:

v∗(b) = max
π

vπ(b) where vπ(b) = −Eπ[T −t |bt = b].

(4)

The optimal value function satisfies the Bellman opti-
mality equation:

v∗(b) = −1 + max
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v∗(b′) ∀b �= bΩ

(5)
with v∗(bΩ) = 0, where B(b, a) is the set of successor
beliefs b′ reachable from a belief b by executing action a
and Pr(b′ |b, a) is the probability of transitioning from b
to b′ upon a. Possible transitions correspond to possible
observations o, as illustrated in Fig. 2, and transition
probabilities are given by Pr(o) =

∑
s∈S Pr(o | s)b(s).

Once a function solution to the Bellman optimality
equation is found, the optimal policy consists in select-
ing the action that maximizes the expected optimal
value:

π∗(b) = argmax
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v∗(b′). (6)

The optimal value function cannot be computed
exactly due to the size of the belief space. It can, how-
ever, be approximated, as explained in the next section.

3 Approximate POMDP solvers

Exactly solving the Bellman optimality equation of a
POMDP is computationally intractable for any but the
smallest problems, and a tremendous amount of effort
has been devoted to the development of approxima-
tion methods [18,19]. The general idea is to solve the
Bellman optimality equation only for a set of sampled
beliefs rather than for the entire belief space, thereby
substantially reducing the complexity of the problem.
In order to obtain good policies, it is key to sample a
sufficiently representative set of beliefs; therefore, the
sampling strategy is critical to the performance of the
method.

In the following, we present the two generic approaches
that are compared in this paper: model-based deep rein-
forcement learning and point-based POMDP solvers.

Fig. 2 Tree of possible successor beliefs b′ starting from a
belief b and executing action a. Transitions from b to b′ are
determined by the observation o

123

 17 Page 4 of 14 Eur. Phys. J. E (2023) 46:17

Fig. 3 Neural network
approximation of the
optimal value function
used in model-based deep
reinforcement learning.
The weights are optimized
so as to minimize the error
on the Bellman optimality
equation (Eq. 7)

3.1 Model-based deep reinforcement learning

The deep reinforcement learning approach to solving
a POMDP [12] consists in approximating the optimal
value function by a deep neural network, and training
the network to minimize the error on the Bellman opti-
mality equation (Fig. 3).

We denote by v̂(b;w) the neural network approxima-
tion of v∗(b) parameterized by weights w. The Bellman
optimality equation for the approximate value function
reads

v̂(b;w∗) = −1 + max
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v̂(b′;w∗)(7)

with v̂(bΩ;w∗) = 0. The problem becomes that of com-
puting the weights w∗ that minimize the residual error
on Eq. 7. This residual error, called the Bellman opti-
mality error, reads

L(w) = Eb∼π̂
⎡

⎣−1 + max
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v̂(b′;w) − v̂(b;w)

⎤

⎦
2

(8)

where the expectation is taken over beliefs b visited
when following the policy π̂ derived from v̂:

π̂(b;w) = argmax
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v̂(b′;w). (9)

Using neural network terminology, the functional L(w)
is the “loss function” to minimize and “training” the
network refers to the iterative update of the weights w
using stochastic gradient descent.

The intuition behind this deep reinforcement learn-
ing approach is the following. At the beginning of the
training, v̂ is initialized with random weights w. As the
consequence, the policy π̂ used to collect beliefs, which
is derived from v̂, is random. At each training iteration,
the weights are adjusted such that v̂ becomes a better
approximation of the true optimal value function on a
collection of beliefs gathered by following π̂ (Eq. 8). As
v̂ is improved, beliefs collected from π̂ become more

representative of the beliefs visited by the optimal pol-
icy. This allows to improve v̂ even further. This itera-
tive process continues until convergence to v̂ ≈ v∗ and
π̂ ≈ π∗.

The training algorithm is a model-based version of
DQN (Deep Q-Network) which relies on two stabiliz-
ing techniques to facilitate convergence (which in gen-
eral is not guaranteed): experience replay and delayed
target network [23]. It is model-based because it takes
advantage of model knowledge: since the probability of
transitioning from a belief b to a successor belief b′ is
known exactly, one can work directly with the value
function rather than the action-value “Q function” in
model-free reinforcement learning, and one can perform
full backups (compute the sum over b′ in equations 7-
9) rather than sample backups (estimates based on a
single successor belief randomly sampled) in model-free
reinforcement learning. The complete algorithm is pro-
vided in Algorithm 1.

3.2 Standard point-based POMDP solvers

The “classical” approach to approximating the optimal
policy for POMDP is to use point-based value itera-
tion (PBVI)1 [20,21,24]. PBVI approximates the opti-
mal value function as piecewise-linear and convex, i.e.,

v̂(b; Γ) = max
α∈Γ

∑

s∈S
b(s) · α(s), (10)

for some collection Γ of α-vectors (it has been shown
[25] that v∗ can be arbitrarily well approximated by
such a function). The challenge consists in constructing
the set Γ∗ such that the Bellman optimality equation

v̂(b; Γ∗) = −1 + γ max
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v̂(b′; Γ∗)

(11)

is solved “at best” for v̂. Note that here we have intro-
duced a discount factor γ = 1−ε with 0 < ε � 1, which

1 PBVI often refers to a specific algorithm introduced in
Ref. [24], the first of its kind. For our purposes, it refers to
the broader class of point-based algorithms for value itera-
tion.

123

Eur. Phys. J. E (2023) 46:17 Page 5 of 14 17

Algorithm 1 Reinforcement learning algorithm used to train a neural network to approximate the optimal value
function.

Initialize replay memory to capacity memory_size
Initialize value function v with random weights w
Initialize target value function v− with random weights w− = w
it ← 0
repeat

Generate new experience
epsilon ← max(epsilon_init ∗ exp(−it/epsilon_decay), epsilon_floor) # decaying ε
m ← 0
episode_complete ← True
while m < new_transitions_per_it do

if episode_complete then
initialize belief b for a new episode
episode_complete ← False

end if
b ← apply_random_symmetry(b) # randomize over symmetries
for all actions a, compute all b′ accessible from b
store (b, a, b′) in replay memory
m ← m + 1
with probability epsilon select a random action a, # ε-greedy exploration
otherwise select action a = argmaxa

∑
b′ Pr(b′ |b, a)v(b′; w)

b ← make_step_in_env(b, a) # execute action and transition to a new belief
episode_complete ← b = bΩ

end while
Update weights by stochastic gradient descent
for gd_step = 1, gd_steps_per_it do

Sample minibatch_size transitions (b, a, b′) from replay memory
For each transition, compute targets y using the delayed target network:
y = −1 + maxa

∑
b′ Pr(b′ |b, a)v−(b′; w−)

Perform a gradient descent step on (y − v(b; w))2 w.r.t network weights w
end for
it ← it + 1
every update_target_network_it iterations, reset v− = v

until weights w have converged

is required for PBVI. We refer to the Appendix C.2 for
more details.

It can be shown that when viewed as an operator act-
ing on v̂, the right-hand side of Eq. 11 is a contraction
and v̂(·; Γ∗) is a fixed point of this operator. This prop-
erty is the basis of value iteration, an iterative algorithm
that proceeds as follows at the nth iteration:

v̂(b,Γn+1) = −1 + γ max
a∈A

∑

b′∈B(b,a)

Pr(b′ |b, a)v̂(b′; Γn)

(12)
for b in a collection of beliefs. The set Γn+1 is built up
by performing a “backup” operation on b: this generates
a new α-vector which improves the approximation of
that belief’s value (and presumably that of other beliefs
close to it). We refer the reader to the related technical
literature [21] for more information on backups.

PBVI algorithms differ in how the beliefs to be
backed up are chosen and the order in which they are
backed up. Due to the size of the belief space, which is
frequently very high-dimensional, choosing an efficient
scheme is of critical importance.

Perseus [26] constructs its set of beliefs by collecting
them along trajectories generated using a heuristic pol-

icy. Then, the beliefs are backed up, one by one, until
every belief satisfies v̂(b; Γn+1) ≥ v̂(b; Γn) (as a conse-
quence of convexity, backups can only increase the esti-
mated value of a belief). The order of the backups is
either random or (our preference) in order of decreasing
Bellman error [27]. For very large POMDPs (as consid-
ered here) where the set of beliefs can only be a very
small subset of the entire belief space, the quality of
the heuristic used to sample beliefs is key: it must visit
beliefs that are representative of the beliefs visited by
the optimal policy.

Sarsop [28], on the other hand, interleaves belief sam-
pling and backups which allows it to be more parsi-
monious in its selection of beliefs. It tries to construct
a tree of beliefs which are reachable from the initial
belief b0 by taking sequences of quasi-optimal actions,
pruning branches corresponding to provably subopti-
mal actions. An advantage of this approach is that it
maintains lower and upper bounds on the exact optimal
value which progressively tighten as the algorithm pro-
ceeds. The algorithm stops when the distance between
the bounds for b0 is sufficiently small.

Perseus and Sarsop do not comprise an exhaustive
list of PBVI algorithms for POMDPs. However, they
are popular, and there is little interest in testing every
available solver.

123

 17 Page 6 of 14 Eur. Phys. J. E (2023) 46:17

Table 1 Description of the four test cases used for benchmarking. In the top table, we describe the size of the problem.
The state is defined as the position of the agent relative to the source, so for a grid size nx × ny the number of possible
states is |S| = (2nx − 1)(2ny − 1). The action space A consists of the four possible moves to adjacent cells. The observation
space O is the union of the terminal observation Ω and of the set {0, 1, . . . , hmax} of hit values that can be received at
each step. B0 is the set of initial beliefs. Tmax is the maximum time allowed for the search (if the source is not found at
t = Tmax, the search is considered a “failure”). In the bottom table, we provide information on search times and number of
odor detections. Mean(T) is the mean number of steps to find the source. P99(T) is number of steps after which 99 % of
the sources are found. Mean(cum. hits) is the mean number of hits cumulated during the search. The reported values for
Mean(T), P99(T) and Mean(cum. hits) correspond to the best policy we obtained for each case

Case Grid size |S| |A| hmax |O| |B0| Tmax

isotropic, smaller domain 19 × 19 1369 4 2 4 2 642
isotropic, larger domain 53 × 53 11025 4 3 5 3 2188
windy, with detections 81 × 41 13041 4 1 3 1 10000
windy, almost no detections 81 × 41 13041 4 1 3 1 10000

Case Mean(T) P99(T) Mean(cum. hits)

isotropic, smaller domain 13.2 79 1.7
isotropic, larger domain 34 152 10
windy, with detections 63 274 6
windy, almost no detections 217 1331 1.6

Fig. 4 Probability distribution of the source location for
the four test cases. The agent’s starting position is fixed
and is denoted by a circle. The source location is drawn ran-
domly at the beginning of each search from this probability
distribution. For the isotropic cases, the distribution shown

here is actually the weighted sum of the different possible
initial beliefs corresponding to the different possible initial
hits. For the windy cases, a single initial belief is considered
and corresponds to the probability distribution shown here

123

Eur. Phys. J. E (2023) 46:17 Page 7 of 14 17

4 Quantitative benchmark

4.1 Methods

We consider four test cases which are described in
Table 1. In the first two test cases, the problem is
isotropic: the search domain is a square grid and the
agent starts the search at the center of the domain.
Two different problem sizes are considered: a 19 × 19
grid (“smaller”) and a 53 × 53 grid (“larger”). In both
cases, the source emission rate is chosen such that occa-
sional detections are likely to occur during the search.
Possible hit values are integers between 0 and 2 or 3.
The initial belief is drawn from a small set containing 2
or 3 initial beliefs corresponding with an initial nonzero
hit. The setup is identical to that used in [12]. In the
last two test cases, the effect of a mean wind in the
positive x-direction is accounted for: the domain is a
rectangular grid (81 × 41) and the agent starts down-
wind at position (66, 21). Two different source emission
rates are considered, such that the search is performed
either with occasional detections (“with detections”)
or almost without any detections (“almost no detec-
tions”). Possible hit values are either 0 or 1. A single
initial belief is used. This setup is similar to that used
in [22]. The probability distribution of possible source
locations and the initial position of the agent are shown
in Fig. 4 for each test case. Additional technical details
on the setups are provided in Appendix B.

Approximately optimal policies have been computed
using three different computational methods: deep rein-
forcement learning (DRL), Sarsop [28] and Perseus [26].
We briefly summarize our methodology in the remain-
der of this section; refer to Appendix C for further
details.

The DRL method is very generic and has no theoreti-
cal restrictions on the type of POMDP it can solve, but
involves a large number of hyperparameters. We found
empirically that the quality of the solution shows very
little sensitivity to most hyperparameters. Only the size
of the neural network and the learning rate must be cho-
sen in an appropriate manner (large enough and small
enough, respectively). Based on extensive experiments
by [12], we use a learning rate of 10−3 and a fully con-
nected neural network with three hidden layers of 512
neurons for the small isotropic case and of 1024 neurons
for all other cases. We found that increasing the network
size further does not yield further improvements to the
learned policy.

Sarsop and Perseus are two standard PBVI solvers
[21]. In principle, these solvers can only deal with dis-
counted POMDPs (the olfactory search POMDP is
undiscounted). In practice, we found that good policies
can be obtained for the undiscounted POMDP (γ = 1)
while solving for the discounted version of the problem
(γ < 1). An additional limitation of Sarsop is that it
requires a single initial belief, while there are several
ones in our isotropic test cases. As one initial belief is
much more likely than other ones (cf. Appendix B.1),
Sarsop was used considering only this initial belief. The

out-of-the-box version of Perseus is unable to obtain
good approximate solutions. Nevertheless, using a good
heuristic (we use infotaxis [6]) instead of a random pol-
icy to collect beliefs and using reward shaping allowed
us to use Perseus for the olfactory search POMDP [22].

Policy evaluation has been performed with OTTO, a
software dedicated to the olfactory search POMDP and
designed for this purpose [29]. This software has been
augmented with the windy setup, which was not present
in the original version, and adapted so that it can use
policies computed with PBVI solvers. The augmented
version of OTTO used for this paper can be found at
https://github.com/auroreloisy/otto-benchmark.

As policies, in general, do not guarantee that the
source will be always found, a search may never ter-
minate. We prescribe a maximum search time Tmax for
each case (cf. Table 1), which is chosen much larger
than the maximum time it takes a good policy to find
the source. If the source is not found at t = Tmax, the
episode is marked as “failure”. The performance of a
policy is defined based on two metrics: Mean(T), the
mean time to find the source conditioned on the fact
that the source is found, and Pr(failure), the probabil-
ity that a search ends by a failure.

4.2 Results

Overall, all solvers are able to obtain decent policies
for all test cases. Examples of quasi-optimal search tra-
jectories are provided in Fig. 5. In all cases, typical
searches roughly consist of an exploratory phase fol-
lowed by an exploitative phase after the first detections
are made. At the beginning of the search, the source
can be anywhere within a vast area, and the agent
executes long straight moves to explore it efficiently
(forming a spiral in the isotropic cases, or long upwind
surges in the windy cases). When an odor is detected
(nonzero hit), the belief suddenly narrows down to a
much smaller area which is very likely to contain the
source. The agent then restricts its moves to this area
which is searched in a more exhaustive manner.

In the isotropic cases, the main difficulty is the lack
of directionality. As the source is initially equally likely
to be in any direction, and hits only inform about the
distance to the source, the belief typically exhibits a
high degree of symmetry around the agent. Commit-
ting to a given direction will necessarily incur a large
penalty if the source is actually located in any other
direction. In the windy cases, the main difficulties are
the long distance that typically separates the source and
the agent, resulting in longer search times compared to
the isotropic cases, and the risk of “missing” the source
(passing by it upwind) and leaving the odor plume (this
explains why the agent goes back twice in Fig. 5, top
right panel). The windy case with almost no detection
is an extreme example where the search is very long but
almost deterministic: unlike other cases, here the agent
is almost sure to detect nothing at each step.

The quantitative performance of the various policies
on the four test cases is reported in Fig. 6. Two met-
rics are considered: Pr(failure), the probability of never

123

https://github.com/auroreloisy/otto-benchmark

 17 Page 8 of 14 Eur. Phys. J. E (2023) 46:17

finding the source, and Mean(T), the mean time to find
the source provided it is ultimately found. Three poli-
cies have been computed using numerical solvers: deep
reinforcement learning (DRL), Sarsop and Perseus. For
comparison, two state-of-the-art heuristic policies are
also shown: infotaxis [6] and space-aware infotaxis [12].

DRL beats Perseus and Sarsop on three out of four
test cases (the two isotropic cases, and the windy case
with detections). The probability of never finding the
source is negligible for the three solvers, and the mean
time to find the source is lower with DRL. Perseus
and Sarsop perform comparably well. These results also
show that space-aware infotaxis is very close to the opti-
mal performance on these three test cases.

DRL, however, fails at obtaining a quasi-optimal pol-
icy for the windy case with almost no detections, where
it performs worse than other solvers and than info-
taxis (space-aware infotaxis is not a good policy in this
case). This test case is particular, as the search is very
long but essentially deterministic as odor detections
are extremely rare. The failure of DRL in this scenario

could be due to inappropriate hyperparameters, though
we performed limited testing of those without success.
We speculate that a possible explanation is that epsilon-
greedy exploration, which we used in our implementa-
tion of DRL, is known to be deficient for problems with
long time horizons and should be replaced with a form
of “deep exploration” [30]. However, this is beyond the
scope of the present work.

4.3 Discussion

While Perseus was found to perform well overall, it
is worth reminding the reader that it requires a good
heuristic to collect beliefs as well as a clever reward
shaping. Here, we used infotaxis as a heuristic, which is
already close to optimality, and the reward shaping was
based on trial and error. Therefore, Perseus is actually
inferior to DRL and Sarsop in general, which require
no domain knowledge or human intuition. In our view,
the sole advantage that Perseus enjoys over Sarsop is

Fig. 5 Examples of quasi-optimal search trajectories for
the four test cases. The agent’s starting point and the
source’s position are denoted by a circle and a cross, respec-
tively. Nonzero hits (odor detections) are indicated by stars.

The orange shading color-codes the likelihood of making a
detection in each grid cell, given its position with respect
to the source. The trajectories were obtained with the best
policies for each case

123

Eur. Phys. J. E (2023) 46:17 Page 9 of 14 17

its applicability to problems with a broad distribution
of initial beliefs. In this section, we discuss further the
pros and cons of Sarsop and DRL.

Beyond the raw performance of the policies on the
task, it is interesting to consider the computational cost
that each method entails. We will not provide quan-
titative metrics, as (i) the solver implementations are
done in different languages (Python for DRL, C++
for Sarsop) and (ii) our tests have been performed on
vastly different machines. But we will provide qualita-
tive remarks on our experience with using these various
approaches.

As a solver, DRL is painfully slow compared to Sar-
sop: DRL can take several days when Sarsop provides
a solution within a couple hours. On the other hand,
Sarsop provides very large policies which are exceed-
ingly slow to execute. In comparison, the neural net-
work policies obtained by DRL are much lighter and
faster to execute, typically by a factor of roughly 10.
To make Sarsop competitive with DRL with respect to
execution time, we computed additional Sarsop policies,
called “Sarsop-Light” in Fig. 6. Sarsop-Light policies
are defined by a smaller number of α-vectors, chosen
such that the number of free parameters that param-
eterize the policy is comparable to that of the corre-
sponding DRL policies (cf. Tables 5 and 7). We found
that Sarsop-Light policies are typically inferior to DRL
policies.

5 Conclusion

In this paper, we have compared two computational
methods for approximately solving large POMDPs: a
recently proposed one based on deep reinforcement
learning (DRL) and the standard one relying on point-
based value iteration (PBVI). We benchmarked these
methods on variants of the olfactory search POMDP,
a Goal-POMDP where the agent must find a hidden
odor source as quickly as possible using stochastic par-
tial observations in the form of odor cues. As PBVI
comes in a number of slightly different flavors, we chose
for our benchmark two popular PBVI implementations:
Sarsop and Perseus.

While all solvers performed well overall, DRL out-
performed PBVI on three out of four test cases. DRL
shines by its ability to provide lighter policies with sig-
nificantly faster execution speed compared to the poli-
cies generated by PBVI. Constraining PBVI solvers to
reduce the size of their policies considerably degrade
their performance on the task.

On the other hand, obtaining good policies with DRL
requires training a large deep neural network, which
is a costly process. In comparison, PBVI can gener-
ate approximate solutions much more efficiently. DRL
also involves a large number of hyperparameters. Even
though hyperparameter optimization is not needed to
obtain good solutions, some minimal tuning is needed,
which further increases the cost of training. Finally, on
the fourth test case (a very long, almost deterministic

Fig. 6 Performance of various policies on the four test
cases, measured by the mean search time to find the source
(lower is better). The probability of never finding the source
is color-coded. Four policies have been computed using
numerical solvers: deep reinforcement learning (DRL)[12],

Sarsop [28] and its light version (Sarsop-Light) where the
number of α-vectors is constrained such that the number
of free parameters is comparable to DRL, and Perseus [26].
Two heuristic policies are shown for comparison: infotaxis
[6] and space-aware infotaxis (SAI) [12]

123

 17 Page 10 of 14 Eur. Phys. J. E (2023) 46:17

search), the performance of DRL is significantly worse
than that of PBVI for reasons that remain to be eluci-
dated.

To summarize, DRL is competitive with respect to
traditional PBVI solvers, and the best choice depends
on the use case. PBVI solvers are best if the compu-
tation time allowed to the solver is limited (and we
recommend Sarsop over Perseus). DRL is best if the
execution time or the policy size is limited, as is usually
the case in robotics. Solutions to the olfactory search
POMDP have applications to sniffer robots, and DRL
offers interesting perspectives for the future of these
robots.

DRL also has a strong advantage in its flexibility:
it can be applied without convergence issue to undis-
counted problems, whereas point-based solvers require
a strictly less-than-unity discount factor. For this rea-
son, DRL has potential to be applied to a risk-sensitive
setting by appropriately generalizing the Bellman equa-
tion [31,32], an idea which will be explored in future
research.

The olfactory search POMDP we considered is model
based: the agent knows the process that generates odor
detections (the “model”), which allows it to maintain
a belief using Bayesian inference. This assumption can
be relaxed by considering instead an agent that makes
decisions based directly on its current observation and
some internal memory state, typically using a recurrent
neural network [33]. In principle, the model-free agent
can attain the same performance on the task as the
model-based one. In practice, recurrent neural networks
are hard to train and it will be interesting to evaluate
their performance in light of the (near-)optimal perfor-
mance that can be computed in the model-based set-
ting.

Acknowledgements We thank Luca Biferale, Antonio
Celani, Massimo Vergassola, and Christophe Eloy for use-
ful discussions. AL received funding from the European
Research Council (ERC) under the European Union’s Hori-
zon 2020 Research and Innovation Programme (grant agree-
ment No. 834238). RAH received funding from the Euro-
pean Union’s H2020 Program under grant agreement No.
882340. Centre de Calcul Intensif d’Aix Marseille is acknowl-
edged for granting access to its high-performance computing
resources.

Author contribution statement

AL and RAH designed the study, performed the
research and analyzed the results. AL wrote the
manuscript with the help of RAH.

Data availability The code used to generate DRL poli-
cies and to evaluate all policies on the olfactory search
POMDP is available at https://github.com/auroreloisy/
otto-benchmark. The policies computed with the vari-
ous solvers can be downloaded at https://doi.org/10.5281/
zenodo.7586357. The data used to plot the results in

Fig. 6 are available at https://doi.org/10.5281/zenodo.
7586312. PBVI policies were obtained using the code avail-
able at https://github.com/rheinonen/PerseusPOMDP/ for
Perseus and at https://github.com/rheinonen/sarsop/ for
Sarsop.

Declarations

Conflict of interest The authors have no competing inter-
ests to declare.

Appendix A Observation model: odor disper-
sion and detection in turbulence

In this appendix, we provide the model used to generate
observations (hits), that is, we specify Pr(h |s). This model
is based on a physical modeling of odor dispersion and detec-
tion in a turbulent flow.

We consider a point source that emits, at a rate R, odor
particles with a finite lifetime τ . They disperse in the tur-
bulent medium, which is characterized by an effective dif-
fusivity D and a mean wind speed V . The wind blows in
the positive x-direction, denoted by the unit vector ex. The
searcher is modeled as a sphere (disk) of diameter Δx fully
covered in receptors. A every step, it takes a “sniff” over a
time Δt, during which odor particles diffusing to its surface
are absorbed. It then moves by one body length Δx (which
defines the size of a grid cell).

Based on these assumptions, one can derive the mean
number μ of odor particles (“hits”) detected by the searcher
as a function of its position r with respect to the source
[6,12]:

μ(r) =
RΔt

ln(2λ/Δx)
exp

(
V r · ex

2D

)

K0

(|r|
λ

)

in 2D

(A1a)

μ(r) =
RΔtΔx

2|r| exp

(
V r · ex

2D
− |r|

λ

)

in 3D

(A1b)

with

λ =

√
√
√
√

Dτ

1 +
V 2τ

4D

(A2)

where K0 is the modified Bessel function of the second kind
of order 0. The number of hits is distributed according to a
Poisson’s law

Pr(h |μ) =
μh exp(−μ)

h!
(A3)

with mean μ.
This completes the description of the observation model

Pr(h | s). In the main text, r is denoted s to be consistent
with standard POMDP notations. The likelihood of observ-
ing h in state s corresponding to position r is given by

Pr(h |s) = Pr(h |μ(r)). (A4)

123

https://github.com/auroreloisy/otto-benchmark
https://github.com/auroreloisy/otto-benchmark
https://doi.org/10.5281/zenodo.7586357
https://doi.org/10.5281/zenodo.7586357
https://doi.org/10.5281/zenodo.7586312
https://doi.org/10.5281/zenodo.7586312
https://github.com/rheinonen/PerseusPOMDP/
https://github.com/rheinonen/sarsop/

Eur. Phys. J. E (2023) 46:17 Page 11 of 14 17

Table 2 Parameters of the observation model used in the isotropic cases (no wind)

Case λ/Δx RΔt

isotropic, smaller domain 1.0 1.0
isotropic, larger domain 3.0 2.0

Table 3 Search initialization: observation values (number h of hits) and their probabilities of occurring. Each value of h0 is
used to generate an initial belief b0. The set B0 of initial beliefs contains as many elements as there are possible observation
values. The probability that a particular b0 is drawn at the beginning of a search is given by the associated Pr(h0)

Case Pr(h0 = 1) Pr(h0 = 2) Pr(h0 = 3) |B0|
isotropic, smaller domain 0.85 0.15 – 2
isotropic, larger domain 0.83 0.13 0.04 3
windy, with detections 1.00 – – 1
windy, almost no detections 1.00 – – 1

Appendix B Further specifications of the
POMDP variants used as test cases

B.1 Search initialization

The search start by drawing a initial belief b0 from the set
of initial beliefs B0. Here, we provide further details about
the construction of this set.

Before the search starts, we assume that the searcher is
located in an infinite domain containing a source which loca-
tion is distributed uniformly. We calculate the probabilities
of detecting an odor, Pr(h0) for h0 > 0, based on the obser-
vation model: Pr(h) =

∑
s Pr(h | s) Pr(s), where Pr(s) is a

constant here. Then, we initialize the finite-size grid with
a uniform prior b−1(s). We draw a nonzero hit from the
distribution Pr(h0), and perform the Bayes update of the
belief accordingly. This gives us b0. The search starts from
this b0. Each initial nonzero hit value h0 yields a different
initial belief b0. Effectively, the initial belief is drawn ran-
domly from the set of possible initial beliefs B0 built from
the possible values of h0. The reader is referred to [12] for
more details.

The set of initial beliefs and their probabilities depend on
the test case, cf. Table 3. In the isotropic cases, it contains
several elements. In the windy cases, hits are binary (h = 1
for a detection, h = 0 otherwise) so a single initial belief is
considered.

B.2 Observation model

In the two isotropic cases, V = 0 and we use the 2D version
of the observation model (Eq. A1a), which reduces to:

μ(r) =
RΔt

ln(2λ/Δx)
K0

(|r|
λ

)

(B5)

with λ =
√

Dτ . It is fully defined by specifying two dimen-
sionless parameters, which we chose as λ/Δx and RΔt, as
was done in [12]. Their numerical values are given in Table 2.

In the two windy cases, we use the 3D version of the
observation model (Eq. A1b). To fully specify the model,
three dimensionless parameters must be set. For consistency
with [22], we choose

R̄ =
RΔt

2
V̄ =

V Δx

D
τ̄ =

V 2τ

D
. (B6)

Their values are provided in Table 4.

Appendix C Methodological details on DRL,
Sarsop and Perseus

C.1 Deep reinforcement learning

To approximate the optimal value function, we use a fully
connected neural network with three hidden layers. Exten-
sive experiments by [12] suggest that as a rule of thumb,
one should choose a number of neurons per layer roughly
proportional to the size |S| of the input (the belief). Here,
we used either 512 or 1024 neurons per layer depending on
the test case, cf. Table 5.

For a search domain of size nx × ny, the belief is a two-
dimensional array of probability values with size (2nx−1)×
(2ny − 1). Each entry corresponds to a possible position
of the source with respect to the agent: if we denote the
coordinates of the center of the array as (0, 0), the source’s
possible position relative to the agent ranges from −(nx −
1) to (nx − 1) along the x-direction, and from −(ny − 1)
to (ny − 1) along the y-direction. Since the belief size is
four times larger than the grid size, 3/4th of the entries are
outside the search domain and are zeros (cf. Figure 3). This
two-dimensional array is flattened before being fed to the
network.

The pseudocode of the reinforcement learning algorithm
is provided in Algorithm 1. The hyperparameters we used
are given in Table 6. They were not optimized (it would be
too costly) but chosen based on [12] and limited experiments
which showed that the learned policy is essentially insensi-
tive to hyperparameters (provided they are given reasonable
values).

C.2 PBVI algorithms

The olfactory search POMDP is an example of POMDP
with undiscounted rewards. More generally, one can intro-
duce a discount factor γ ∈ (0, 1] and the cumulated reward

123

 17 Page 12 of 14 Eur. Phys. J. E (2023) 46:17

Table 4 Parameters of the observation model used in the windy cases

Case R̄ V̄ τ̄

windy, with detections 2.5 2 150
windy, almost no detections 0.25 2 150

Table 5 Size of the fully connected neural network used for each case. We always use three hidden layers. The number of
free parameters (weights) is N = H(I + 2 H + 4) + 1, where I is the input size (number of states |S|) and H the number of
neurons per hidden layer

Case Input size Hidden layers Number of free parameters

isotropic, smaller domain 1369 3×512 1,227,265
isotropic, larger domain 11025 3×1024 13,390,849
windy, with detections 13041 3×1024 15,455,233
windy, almost no detections 13041 3×1024 15,455,233

Table 6 List of hyperparameters (as usually defined or defined in Algorithm 1) and the typical values we used. Actual
values used for each case may slightly differ, refer to our implementation at https://github.com/auroreloisy/otto-benchmark

Hyperparameter Value Description

learning rate 0.001 for stochastic gradient descent (SGD)
epsilon_init 1.0 initial value of ε for ε-greedy exploration
epsilon_floor 0.1 final value of ε for ε-greedy exploration
epsilon_decay 20000 time scale for decay of ε
memory_size 1000 number of transitions stored in memory
minibatch_size 64 size of the minibatch for SGD updates
new_transitions_per_it 192 transitions added to memory per iteration
gd_steps_per_it 12 number of SGD updates per iteration
update_target_network_it 1 frequency of target network updates

for an episode is
∑T

t=1 γt−1rt. The original problem corre-
sponds to γ = 1. Using rt = −1, we have:

E

[
T∑

t=1

γtrt

]

=

⎧
⎨

⎩

−E[T] for γ = 1,

−1 − E[γT]

1 − γ
for γ < 1.

(C7)

The discount factor helps regularize the problem by sup-
pressing the influence of times far in future on the policy.
Formally, each choice of γ defines a different POMDP, but
presently we will continue to treat the (undiscounted) mean
arrival time as our objective function and consider γ to
be a tunable hyperparameter, necessary for the functioning
of most popular POMDP algorithms (Sarsop and Perseus
included). Generally, we try to keep it as close to unity as
possible; for Sarsop we chose γ = 0.98, and for Perseus we

chose one of 0.95, 0.96 or 0.98, tuned by hand to optimize
performance.

In order to obtain competitive policies with Perseus, we
usually found it necessary to transform the problem by
introducing a potential shaping function [34] to the reward.
Defining r(b, a) as the reward obtained when executing
action a in belief b, one can show that replacing the origi-
nal (constant) reward function r(b, a) = −1 by the shaped
reward function

r(b, a) = −1 + F (b, a) (C8)

with F (b, a) a function of the form

F (b, a) = φ(b) − γ
∑

b′
Pr(b′ |b, a)φ(b′), (C9)

Table 7 Size of the PBVI policy, for each case. The number of free parameters is equal to the number of α-vectors
multiplied by the number of states |S|

Number of α-vectors (Number of free parameters)
Case Sarsop Sarsop-Light Perseus

isotropic, smaller domain 19,834 (27,152,746) 880 (1,204,720) 2,058 (2,817,402)
isotropic, larger domain 10,523 (116,016,075) 1,207 (13,307,175) 4,392 (48,421,800)
windy, with detections 9,314 (121,463,874) 1,149 (14,984,109) 3,880 (50,599,080)
windy, almost no detections 9,509 (124,006,869) 1,149 (14,984,109) 670 (8,737,470)

123

https://github.com/auroreloisy/otto-benchmark

Eur. Phys. J. E (2023) 46:17 Page 13 of 14 17

preserves the optimal policy. A clever choice can sometimes
accelerate convergence of value iteration. We took

φ(b) = −c
∑

s∈S
D(s) · b(s) (C10)

with c constant and D(s) the Manhattan distance between
the agent and the source in state s. The point of this choice
is to incentivize the agent to move closer to the source. The
hyperparameter c was tuned from problem to problem.

We found that policies do not always improve mono-
tonically under Perseus, so policies were evaluated empir-
ically after every iteration, and the algorithm was termi-
nated when the mean arrival time failed to improve for some
selected number of iterations.

As written, the Sarsop algorithm takes as input a single
prior which serves as the root of the belief tree; Perseus,
in contrast, accepts an arbitrary distribution of priors. For
the isotropic problems, where several priors are possible, we
simply used the most likely prior, corresponding to a single
detection (h0 = 1) at time t = 0 (cf. Appendix B.1).

The size of the PBVI policies is reported in Table 7.

References

1. K.J. Åström, Optimal control of Markov processes
with incomplete state information. J. Math. Anal.
Appl. 10, 174–205 (1965). https://doi.org/10.1016/
0022-247X(65)90154-X

2. R.D. Smallwood, E.J. Sondik, The optimal control of
partially observable Markov processes over a finite hori-
zon. Op. Res. 21(5), 1071–1088 (1973). https://doi.org/
10.1287/opre.21.5.1071

3. A.R. Cassandra, L.P. Kaelbling, M.L. Littman, in Pro-
ceedings of the Twelfth AAAI National Conference on
Artificial Intelligence (AAAI Press, Seattle, Washing-
ton, 1994), AAAI’94, pp. 1023–1028

4. A.R. Cassandra, L.P. Kaelbling, J.A. Kurien, in Pro-
ceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems. IROS ’96, vol. 2
(IEEE, 1996), pp. 963–972. https://doi.org/10.1109/
IROS.1996.571080

5. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics
(MIT Press, Cambridge, 2006). https://doi.org/10.
1108/03684920610675292

6. M. Vergassola, E. Villermaux, B.I. Shraiman, Info-
taxis as a strategy for searching without gradients.
Nature 445(7126), 406–409 (2007). https://doi.org/10.
1038/nature05464

7. J. Murlis, J.S. Elkinton, R.T. Carde, Odor plumes
and how insects use them. Ann. Rev. Entomol. 37(1),
505–532 (1992). https://doi.org/10.1146/annurev.en.37.
010192.002445

8. N.J. Vickers, Mechanisms of animal navigation in odor
plumes. Biol. Bull. 198(2), 203–212 (2000). https://doi.
org/10.2307/1542524

9. R.T. Cardé, Navigation along windborne plumes of
pheromone and resource-linked odors. Ann. Rev. Ento-
mol. 66(1), 317–336 (2021). https://doi.org/10.1146/
annurev-ento-011019-024932

10. R.A. Russell, Odour Detection by Mobile Robots (World
Scientific, Singapore, 1999)

11. A. Celani, E. Villermaux, M. Vergassola, Odor land-
scapes in turbulent environments. Phys. Rev. X
4(4), 041,015-041,015 (2014). https://doi.org/10.1103/
PhysRevX.4.041015

12. A. Loisy, C. Eloy, Searching for a source without gra-
dients: how good is infotaxis and how to beat it.
Proc. Royal Soc. A Math. Phys. Eng. Sci. 478(2262),
20220,118 (2022). https://doi.org/10.1098/rspa.2022.
0118

13. T. Lochmatter, Bio-Inspired and Probabilistic Algo-
rithms for Distributed Odor Source Localization Using
Mobile Robots PhD thesis EPFL. Lausanne (2010)

14. E.M. Moraud, D. Martinez, Effectiveness and robust-
ness of robot Infotaxis for searching in dilute conditions.
Front. Neurorobot. 4, 1–8 (2010). https://doi.org/10.
3389/fnbot.2010.00001

15. D. Martinez, E.M. Moraud, Neuromorphic olfaction, in
Frontiers in Neuroengineering. ed. by K.C. Persaud, S.
Marco, A. Gutiérrez-Gálvez (Taylor, Boca Raton, 2013)

16. A.J. Calhoun, S.H. Chalasani, T.O. Sharpee, Maximally
informative foraging by Caenorhabditis Elegans. Elife 3,
e04220 (2014). https://doi.org/10.7554/eLife.04220

17. N. Voges, A. Chaffiol, P. Lucas, D. Martinez, Reac-
tive searching and Infotaxis in odor source localization.
PLoS Comput. Biol. 10(10), e1003,861 (2014). https://
doi.org/10.1371/journal.pcbi.1003861

18. H. Kurniawati, Partially observable Markov decision
processes and robotics. Ann. Rev. Control Robot.
Autonom. Syst. 5(1), 253–277 (2022). https://doi.org/
10.1146/annurev-control-042920-092451

19. M.J. Kochenderfer, T.A. Wheeler, K.H. Wray, Algo-
rithms for Decision Making (MIT Press, Cambridge,
2022)

20. J. Pineau, G. Gordon, S. Thrun, Anytime point-based
approximations for large POMDPs. J. Artif. Intell. Res.
27, 335–380 (2006). https://doi.org/10.1613/jair.2078

21. G. Shani, J. Pineau, R. Kaplow, A survey of point-
based POMDP solvers. Auton. Agent. Multi-Agent
Syst. 27(1), 1–51 (2013). https://doi.org/10.1007/
s10458-012-9200-2

22. R.A. Heinonen, L. Biferale, A. Celani, M. Vergassola,
Optimal policies for Bayesian olfactory search in turbu-
lent flows. arXiv:2207.04277 (2022)

23. V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J.
Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wier-
stra, S. Legg, D. Hassabis, Human-level control through
deep reinforcement learning. Nature 518(7540), 529–533
(2015). https://doi.org/10.1038/nature14236

24. J. Pineau, G. Gordon, S. Thrun, Point-based value iter-
ation: An anytime algorithm for POMDPs. in Proceed-
ings of the Eighteenth International Joint Conference on
Artifical Intelligence (IJCAI), pp. 1025–1032 (2003)

25. E.J. Sondik, (1971) The Optimal Control of Partially
Observable Markov Decision Processes PhD thesis,
Stanford University, Stanford

26. M.T.J. Spaan, N. Vlassis, Perseus: randomized point-
based value iteration for POMDPs. J. Artif. Intell. Res.
24, 195–220 (2005). https://doi.org/10.1613/jair.1659

27. G. Shani, R.I. Brafman, S.E. Shimony, Prioritizing
point-based Pomdp solvers. IEEE Trans. Syst. Man
Cybern. Part B (Cybern.) 38(6), 1592–1605 (2008)

123

https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1109/IROS.1996.571080
https://doi.org/10.1109/IROS.1996.571080
https://doi.org/10.1108/03684920610675292
https://doi.org/10.1108/03684920610675292
https://doi.org/10.1038/nature05464
https://doi.org/10.1038/nature05464
https://doi.org/10.1146/annurev.en.37.010192.002445
https://doi.org/10.1146/annurev.en.37.010192.002445
https://doi.org/10.2307/1542524
https://doi.org/10.2307/1542524
https://doi.org/10.1146/annurev-ento-011019-024932
https://doi.org/10.1146/annurev-ento-011019-024932
https://doi.org/10.1103/PhysRevX.4.041015
https://doi.org/10.1103/PhysRevX.4.041015
https://doi.org/10.1098/rspa.2022.0118
https://doi.org/10.1098/rspa.2022.0118
https://doi.org/10.3389/fnbot.2010.00001
https://doi.org/10.3389/fnbot.2010.00001
https://doi.org/10.7554/eLife.04220
https://doi.org/10.1371/journal.pcbi.1003861
https://doi.org/10.1371/journal.pcbi.1003861
https://doi.org/10.1146/annurev-control-042920-092451
https://doi.org/10.1146/annurev-control-042920-092451
https://doi.org/10.1613/jair.2078
https://doi.org/10.1007/s10458-012-9200-2
https://doi.org/10.1007/s10458-012-9200-2
http://arxiv.org/abs/2207.04277
https://doi.org/10.1038/nature14236
https://doi.org/10.1613/jair.1659

 17 Page 14 of 14 Eur. Phys. J. E (2023) 46:17

28. H. Kurniawati, D. Hsu, W.S. Lee, in Proceedings
of Robotics: Science and Systems IV (MIT Press,
Zurich, Switzerland, 2008), pp. 65–72. https://doi.org/
10.15607/RSS.2008.IV.009

29. A. Loisy, C. Eloy, OTTO: a Python package to simu-
late, solve and visualize the source-tracking POMDP. J.
Open Source Softw. 7(74), 4266 (2022). https://doi.org/
10.21105/joss.04266

30. I. Osband, C. Blundell, A. Pritzel, B. Van Roy, in
Advances in Neural Information Processing Systems,
vol. 29 (Curran Associates, Inc., 2016)

31. S.I. Marcus, E. Fernández-Gaucherand, D. Hernández-
Hernandez, S. Coraluppi, P. Fard, Systems and Control
in the Twenty-First Century (Springer, Berlin, 1997)

32. S.P. Coraluppi, S.I. Marcus, Risk-sensitive and mini-
max control of discrete-time, finite-state Markov deci-
sion processes. Automatica 35(2), 301–309 (1999)

33. S.H. Singh, F. van Breugel, R.P.N. Rao, B.W. Brun-
ton, Emergent behaviour and neural dynamics in
artificial agents tracking odour plumes. Nat. Mach.
Intell. 5(1), 58–70 (2023). https://doi.org/10.1038/
s42256-022-00599-w

34. A.Y. Ng, D. Harada, S. Russell, in Proceedings of the
Sixteenth International Conference on Machine Learn-
ing, vol. 99 (1999), pp. 278–287

Springer Nature or its licensor (e.g. a society or other part-
ner) holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing
agreement and applicable law.

123

https://doi.org/10.15607/RSS.2008.IV.009
https://doi.org/10.15607/RSS.2008.IV.009
https://doi.org/10.21105/joss.04266
https://doi.org/10.21105/joss.04266
https://doi.org/10.1038/s42256-022-00599-w
https://doi.org/10.1038/s42256-022-00599-w

	Deep reinforcement learning for the olfactory search POMDP: a quantitative benchmark
	1 Introduction
	2 The olfactory search POMDP
	3 Approximate POMDP solvers
	3.1 Model-based deep reinforcement learning
	3.2 Standard point-based POMDP solvers

	4 Quantitative benchmark
	4.1 Methods
	4.2 Results
	4.3 Discussion

	5 Conclusion
	Author contribution statement
	Appendix A Observation model: odor dispersion and detection in turbulence
	Appendix B Further specifications of the POMDP variants used as test cases
	B.1 Search initialization
	B.2 Observation model

	Appendix C Methodological details on DRL, Sarsop and Perseus
	C.1 Deep reinforcement learning
	C.2 PBVI algorithms

	References
	References

