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We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate
which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show,
both analytically and by numerical simulation, that the equations of motion for an active nematic drop
possess a simple self-propelling solution, with no traction on the solid surface and in which the direction
of motion is controlled by the winding of the nematic director field across the drop height. The physics
underlying this mode of motion has the same origins as that giving rise to the zero viscosity observed in
bacterial suspensions. This topologically protected tractionless self-propusion provides a robust physical
mechanism for efficient cell migration in crowded environments like tissues.
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Self-propulsion, in the absence of load, is required by
Newton’s laws to be force-free. This is ubiquitous in the
locomotion of microorganisms where inertia is negligible,
from swimming bacteria to crawling cells. By force-free,
one means that the total force exerted by the environment
on the motile entity is zero (and the other way around).
This is usually achieved by a gradient of nonzero local
forces on the boundary, as exemplified by cells crawling
on a surface which push at the front and pull at the back.
It would appear impossible to achieve traction-free self-
propulsion, that is, with local forces which not only sum
up to zero but are identically zero everywhere [1].
However, in this Letter, we demonstrate that such self-
propulsion is indeed possible for active matter, such as the
cytoskeleton of living cells. This mode of motion is not
possible in objects driven at boundaries but can occur only
for those driven in the bulk.
Eukaryotic cells have the ability to move in a variety of

complex environments, and they do so by adapting their
mode of migration to the geometrical and physical proper-
ties of their surroundings [2,3]. Crawling is a mode of
motility well characterized experimentally [4–6] and cap-
tured by a variety of physical models [7–12]. In crawling,
forces are transmitted through local friction, which is
provided by the focal adhesions that connect the cytoske-
leton to a surface or to the extracellular matrix. However,
these adhesions are structurally unstable at high strain rates
[13]. This makes crawling ineffective for fast migration in
tissues, where cells have to squeeze through tiny gaps.
Motion with zero local force does not have this limitation,
with profound implications.
A minimal model to study the physical principles of

motility consists of a drop of viscous liquid with orientable
components that consume energy (active matter) on a flat
rigid surface and confined by surface tension. A drop of
active matter generates internal flows all by itself due to

energy input from its components [14–18], and these can
cause the drop to move spontaneously [11,19–27]. Several
studies have shown propulsion of active drops on a surface
with a number of related models [7,9–12]. But those
invariably involve local forces (in the form of friction)
on the substrate.
In this Letter, we show that an active drop can propel

itself without exerting any traction—defined as the local
tangential force per unit area—anywhere on the substrate,
except at its very edge due to surface tension acting to
maintain the drop shape (Fig. 1). This tractionless self-
propulsion is controlled by the global topology of the
orientable active units and also allows motion in a confined
geometry. Specifically, we consider a thin drop endowed
with active stresses σaij ¼ −αninj (α ≠ 0 is the signature of
activity) induced by active units whose orientations are
characterized by a local director n (a unit vector), and we
demonstrate that the equations of motion of this drop on a
surface possess a tank-treading solution, which results in a
center-of-mass velocity given exactly by

V ¼ αH
2πωη

; ð1Þ

where H is a characteristic drop height (whose definition
will be made more precise), η is the fluid viscosity, and ω is
the (nonzero) winding number defined as the number of
quarter turns of the director across the drop height. The
signature of this novel mode of propulsion is the zero
tangential traction exerted by the drop on the substrate
except at the drop edges due to finite contact angles.
Our model is a 2D drop of active nematic liquid crystal

[14,15,17,18] moving with (unknown) velocity V on a solid
substrate. The drop shape is described by its thickness
hðx; tÞ in the normal direction (z) as a function of its
in-plane position (x), as illustrated in Fig. 2(a). We seek
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traveling wave solutions h ¼ hðx − VtÞ which must satisfy,
from mass conservation,

Z
h

0

uxdz ¼ Vh; ð2Þ

where u is the fluid velocity inside the drop, which is
assumed to be incompressible (∂iui ¼ 0).
The velocity in Eq. (2) can be obtained by solving the

Stokes flow equation [28]

∂jσij ¼ 0; ð3aÞ

with

σij ¼ −pδij þ ηð∂jui þ ∂iujÞ − αninj; ð3bÞ

where p is the pressure and where the director n ¼
ðcos θ; sin θÞ minimizes the nematic free energy in the
strong elastic limit [30]:∇2θ ¼ 0with boundary conditions
θ ¼ 0 at z ¼ 0 (anchoring parallel to the substrate) and
θ ¼ ωπ=2þ arctanðh0Þ at z ¼ h (fixed angle ωπ=2 with
respect to the free surface tangent) [31]. In this limit, while

the director will affect the flow, the back coupling of the
flow on the director is negligible.
At the liquid-solid interface, the interaction of the

drop with the rigid substrate is modeled by a partial slip
boundary condition:

ux ¼ luσxz=η at z ¼ 0; ð4aÞ

where lu is a slip length. At the gas-liquid interface, we use
a free surface boundary condition:

σ ·m ¼ γκm at z ¼ h; ð4bÞ

where m is the unit outward vector normal to the free
surface, γ is the surface tension, and κ ¼ −∇ ·m is the
signed curvature.
Assuming a thin droplet geometry where variations in

the x direction are much slower than in the z direction
(∂x ≪ ∂z), as is now standard [12,34–36], we can derive a
leading-order explicit expression of ux as follows. It can be
shown that if ω ¼ 0, the drop is static. Therefore we choose
ω ≠ 0, and the director orientation reads, at leading order,

θ ¼ ωπ

2

z
h
; ð5Þ

and ω ∈ Z� is effectively a winding number which counts
the number of quarter turns of the director across the drop
height, as illustrated in Fig. 2(a).
The z component of Eq. (3) gives, at leading order,

∂zp ¼ 0, and using the normal component of Eq. (4b),
we find that p ¼ −γh00. The x component of Eq. (3)
yields ∂zσxz ¼ ∂xp. This can be integrated once in z,
and we find, using the tangential component of Eq. (4b) and
substituting p, that

σxz ¼ −γh000ðz − hÞ: ð6Þ

Substituting the definition of σxz into Eq. (6) and integrat-
ing once in z with Eq. (4a) yields the parallel velocity

ux ¼ −
γ

η

�
z2

2
− ðzþ luÞh

�
h000 þ α

η

ð1 − cos 2θÞ
2πω

h: ð7Þ

As a last step, we integrate Eq. (7) over the drop thickness
to obtain, using Eq. (2), a nonlinear third-order ordinary
differential equation for the steady-state shape of the drop

γ

η

�
h2

3
þ luh

�
h000 þ α

η

1

2πω
h ¼ V ð8Þ

on the domain x ∈ ½−L=2; L=2� with four boundary con-
ditions at the contact lines:

hð�L=2Þ ¼ 0; h0ð�L=2Þ ¼ ∓ϕ; ð9Þ

FIG. 1. Tractionless self-propulsion of an active drop. A drop
with active stresses σaij ¼ −αninj propels itself (here rightward) at
velocity V, given by Eq. (1), without exerting any tangential
traction on the substrate (except locally at its edges: this local
traction is solely due to surface tension acting to maintain the drop
shape). The winding number ω, defined as the number of quarter
turns of the director n (green rods) across the drop height, controls
the number of fluid circulation cells inside the drop. The internal
velocity profile (blue arrows) in the comoving frame of reference is
ux ¼ −V cos ðωπz=HÞ, with z being the distance to the substrate,
and yields a tank-treading type of motion. The solution obtained
for jωj ¼ 2 also allows propulsion in a confined geometry.

PHYSICAL REVIEW LETTERS 123, 248006 (2019)

248006-2



FIG. 2. (a) Model of a thin active drop with a winded director bounded by a partial slip surface and a free surface. The drop shape and
velocity are controlled by Caα ¼ ðαL3Þ=ð2πωγH2Þ, where ω is the winding number. (b) Drop shape and tangential traction exerted on
the substrate in the three regimes of Caα. (Insets) Internal velocity profiles in selected cross sections for jωj ¼ 1 and jωj ¼ 2. (c) Effect of
Caα on the drop geometry and velocity: h̄ is the mean height of the drop, ðL − LflatÞ=L is the fraction of the drop which is not flat, and V̄
is the estimate of the drop velocity based on the exact solution given by Eq. (1) and using the mean height h̄ as an approximation for H.
(d) Dependence of the drop shape on Caα (top panels) in the transitional regime and (bottom panel) at high Caα.
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where ϕ is the prescribed contact angle. The drop velocity
V is an unknown constant determined as part of the
solution, and the drop width L is determined by the volume
constraint (set here to unity)

Z
L=2

−L=2
hdx ¼ 1: ð10Þ

Dimensional analysis of Eq. (8) indicates that the drop
shape is controlled by Caα ¼ ðαL3Þ=ð2πωγH2Þ, which can
be understood as the active equivalent of the capillary
number Caα ¼ ðηVL3Þ=ðγH3Þ with V given by Eq. (1).
Since Caαðα;ωÞ ¼ Caαð−α;−ωÞ, changing the direction in
which the director winds (from counterclockwise to clock-
wise) is equivalent to changing the sign of activity (from
extensile to contractile). Furthermore, if fhðxÞ; Vg is a
solution for Caα, then fhð−xÞ;−Vg is a solution for −Caα:
reversing the sign of Caα simply reverses the direction of
motion.
Stable solutions of Eqs. (8)–(10) were obtained by

solving numerically the time-dependent problem until it
reaches steady state for various Caα (see the Supplemental
Material [29] for details about numerical methods, in
all simulations lu ¼ 0.05 and ϕ ¼ 1). This allowed us
to identify two regimes of low and high Caα separated
by a transition region around Caα ≈ 0.8, as shown in
Figs. 2(b) and 2(c).
For low Caα, the drop shape is close to a parabola (the

equilibrium solution for a passive drop), and a perturbation
analysis gives the solution [shown with dashed-dotted lines
in Fig. 2(c)]

V ¼ α

2πωη

ϕL
4

ffiffiffi
b

p
− ðb − 1Þarctanhð1= ffiffiffi

b
p Þ

arctanhð1= ffiffiffi
b

p Þ ; ð11Þ

where b ¼ 1þ 12lu=ðLϕÞ and L ¼ ffiffiffiffiffiffiffiffi
6=ϕ

p
.

At intermediate Caα, the drop undergoes a continuous
transition to a qualitatively different shape over a narrow
range of Caα, here for 0.58 < Caα < 1 (the numerical
values of the boundaries of the transition regime depend
on lu and ϕ). First, at Caα ¼ 0.58, the drop develops a
frontal bump [hðxÞ goes from having one extremum to
three extrema; see Fig. 2(d), top left panel]. Then, at
Caα ¼ 1, the drop starts flattening at the rear [Fig. 2(d), top
right panel].
For high Caα, the drop spreads and the extent of the flat

region grows rapidly with increasing Caα [Fig. 2(c), top
right panel]. Analysis of the numerical data indicates that
after the transition, the nonflat fraction of the drop initially
decreases as Ca−1α . The drop velocity can be shown from
the governing equation to be given exactly by Eq. (1),
where H is the local height of the drop where h000 ¼ 0. In
practice, V can be estimated by using the mean drop height
as an approximation for H [Fig. 2(c), bottom right panel].
The error is 5% at Caα ¼ 1 and goes to zero as Caα → ∞.

The tangential traction exerted by the drop on the
substrate is σdrop=substrate ¼ σxzjz¼0 ¼ γhh000; therefore
σdrop=substrate, induced by a moving flat drop, is identically
zero except at the drop edges [Fig. 2(b), right panel]. It also
follows that the drop motion is unaffected by wall slip lu.
Integrating σdrop=substrate over an edge yields an inward
force of magnitude Fedge=substrate ¼ γϕ2=2. As seen from the
substrate, the drop effectively acts as a contractile force
dipole due to finite contact angle ϕ, independent of the sign
and magnitude of activity.
This leads us to offer a very simple sketch of the

tractionless self-propulsion of a flat drop in Fig. 1. The
winding of the director generates an active stress in
the liquid which must be balanced by the viscous stress
such that the total shear stress vanishes. This creates a
number of fluid circulation cells inside the drop exactly
equal to jωj. More precisely, the velocity profile is
sinusoidal (compared to parabolic in other modes of
motion) and reads, in the laboratory frame of reference,

ux ¼ V

�
1 − cos

�
ωπz
H

��
: ð12Þ

The net flow is not zero and causes the drop to tank tread
at a speed V given by Eq. (1). Inside the drop, the rate of
viscous dissipation Dη ¼ ðηπ2ω2V2LÞ=ð2HÞ is exactly
compensated for by the power input Dα¼−ðα2HLÞ=ð8ηÞ
due to activity. The drop speed is maximal for jωj ¼ 1.
Higher winding numbers, while less favored energetically,
are observed in passive nematics with weak anchoring
boundary conditions [37] and therefore may still be relevant.
Note that for jωj ¼ 1, σxz ¼ 0, while the macroscopic

strain rate S ¼ H−1 RH
0 ∂zuxdz ¼ 2V=H is nonzero, mean-

ing that the apparent viscosity of this drop, defined by
ηapp ¼ σxz=S, is zero. An analogous mechanism is respon-
sible for the superfluidlike behavior of active suspensions
under shear [38–40].
The solution for jωj ¼ 2 has zero fluid velocity and zero

shear stress at both boundaries, and therefore it is also a
solution for a drop propelling itself in a channel (bottom
panel in Fig. 1). Traction maps would show a zero traction
on the channel walls everywhere except at the drop edges
(the direction and magnitude of these localized forces
depend on the wettability of the walls). The latter setup
is perhaps the easiest to control experimentally: one can
imagine confining a drop of bacterial suspension [38,40] or
of microtubule-kinesin mixture [19] between two surfaces,
one used for imaging the traction maps [41,42], and the
other prepared to ensure appropriate anchoring (through
manipulation of the surface chemistry or architecture; see,
e.g., Refs. [43–45]).
Unlike other modes of autonomous motion, tractionless

tank treading is effective even in the absence of local
friction and is not associated with shape anisotropy. These
distinctive features are characteristic of contraction-based
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amoeboid motility under conditions of weak adhesion and
strong confinement, such as those exhibited by leukocyte
and human breast cancer cells squeezing through complex
3D extracellular geometries [46,47] or by confined cells
migrating in microchannels [2,48]. Because it does not rely
on adhesion, this novel mode of self-propulsion provides
an efficient mechanism for fast cell motion in crowded
environments.
Tractionless self-propulsion is driven by the internal fluid

flow in the bulk and is not affected by the details of the edges
near the contact line; therefore we expect this mechanism to
extend directly to 3D. It is interesting to make a comparison
with driving due to a constant shear stress at the free surface
(e.g., Marangoni or wind stresses) [49–51] because it gives
rise to an identical driving term in the height equation (8).
Hencewe expect the frontal “bump” seen in 2D to turn into a
fingering instability in 3D. However, this similarity is rather
superficial, as these boundary-driven advancing fronts have
very different internal mechanics from our problem: without
the internal stress balance and the activity-driven bulk
internal flows, they cannot exhibit tractionless self-propul-
sion. Finally, the internal flow, caused here by a prescribed
winding of the director, could also be induced spontane-
ously [52]; we leave the analysis of this more mathemati-
cally intricate problem for future work.
In conclusion, we have shown that autonomous propul-

sion, which is always force-free, can also be traction-free.
In other words, active materials, by virtue of being bulk
driven, can move without imparting any force on their
environment. This rather counterintuitive result, derived
analytically and confirmed by numerical simulations, is a
new example of the astonishing mechanical behavior
exhibited by active fluids, like spontaneous flows
[19,52–54], zero viscosity [38,40], and nonmonotonic flow
curves [39].
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