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Various expressions have been proposed previously for the rise velocity of gas bubbles
in homogeneous steady bubbly flows, generally a monotonically decreasing function
of the bubble volume fraction. For suspensions of freely moving bubbles, some of
these are of the form expected for ordered arrays of bubbles, and vice versa, as
they do not reduce to the behaviour expected theoretically in the dilute limit. The
microstructure of weakly inhomogeneous bubbly flows not being known generally,
the effect of microstructure is an important consideration. We revisit this problem
here for bubbly flows at small to moderate Reynolds number values for deformable
bubbles, using direct numerical simulation and analysis. For ordered suspensions,
the rise velocity is demonstrated not to be monotonically decreasing with volume
fraction due to cooperative wake interactions. The fore-and-aft asymmetry of an
isolated ellipsoidal bubble is reversed upon increasing the volume fraction, and the
bubble aspect ratio approaches unity. Recent work on rising bubble pairs is used
to explain most of these results; the present work therefore forms a platform of
extending the former to suspensions of many bubbles. We adopt this new strategy
also to support the existence of the oblique rise of ordered suspensions, the possibility
of which is also demonstrated analytically. Finally, we demonstrate that most of the
trends observed in ordered systems also appear in freely evolving suspensions. These
similarities are supported by prior experimental measurements and attributed to the
fact that free bubbles keep the same neighbours for extended periods of time.

Key words: bubble dynamics, multiphase flow

1. Introduction
Bubble columns are widely employed in industry because they can offer excellent

heat and mass transfer characteristics without requiring any additional mechanical
stirring. They are conceptually simple: a gas is sparged at the bottom of a liquid-filled
vessel and the bubbles rise under the effect of buoyancy. High transfer rates can then
be attained owing to the increased contact area between the gas and the liquid phases,
and to the liquid agitation induced by the bubbles’ motion. Since a reliable prediction
of bubble residence time and available interfacial area is crucial for an accurate and
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Buoyancy-driven bubbly flows: ordered and free rise 95

successful design of industrial columns, the understanding of bubble flow dynamics
is essential.

In this context, a fundamental problem is the accurate prediction of the average
bubble rise velocity in a statistically homogeneous buoyancy-driven flow of mono-
disperse bubbles, with the intention of using the results to systems with weak
confinement and/or large-scale gradients. The average bubble rise velocity relative to
the average velocity of the entire suspension is termed herein the drift velocity and
the magnitude of the drift velocity is denoted by U. In the dilute limit (wherein the
bubble volume fraction is vanishingly small), if no clustering occurs, bubbles behave
as if they were isolated, and the drift velocity approaches the terminal velocity U0 of
a single bubble in unbounded liquid under otherwise the same conditions, for which
a number of correlations are available (Clift, Grace & Weber 1978; Loth 2008).
As volume fraction increases, U generally departs from U0. We therefore define
G(φ)=U/U0, where φ is the gas volume fraction; the dependencies of G on various
other dimensionless groups (termed herein as ‘flow conditions’) are suppressed in the
notation for G for brevity, but are not ignored.

A common form of the dependency on volume fraction used in empirical
correlations is the Richardson–Zaki expression G(φ) = (1 − φ)n (Richardson &
Zaki 1954; Ishii & Zuber 1979), where n is an empirical parameter that depends on
flow conditions. Various experiments have been carried out previously to determine
G(φ) by injecting bubbles of millimetric size in a vertical column filled with clean
water. In their respective experiments, Zenit, Koch & Sangani (2001) found that their
measurements could be approximately described by the Richardson–Zaki formula with
exponent n = 2.8, Garnier, Lance & Marié (2002) obtained instead G(φ) = 1 − φ1/3

and Colombet et al. (2015) fitted their data by G(φ) = (0.28 + 0.72 exp(−15φ))1/2.
Experimental complexities may have arisen that could explain these differences. For
example, it is challenging to purify water of surfactants, to rule out wall effects
and to obtain a truly monodisperse suspension. A main inconvenience is that usually
the bubble diameter cannot be kept constant if the volume fraction is changed, and
the terminal velocity (and shape) of a single bubble strongly depends on the bubble
size (Clift et al. 1978). This renders difficult disentangling the dependency of drift
velocity on hydrodynamic interactions – along with the microstructure – from that on
bubble size if the latter is varied simultaneously with volume fraction.

Theoretical predictions of the drift velocity of bubbles are available for asymptotic
and ideal systems. The drift (or rather, sedimentation) velocity derived by Batchelor
(1972) for rigid particles in Stokes flow, wherein a uniformly random sedimenting
suspension of particles is considered, has been generalized to droplets and bubbles,
yielding G(φ) = 1 − 4.44φ + O(φ2) for bubbles whose viscosity can be ignored
compared to that of the liquid (Keh & Tseng (1992); earlier work cited therein used
various approximations for the mobility matrix). This linear correction includes a
contribution −φ due to the back flow induced by the bubble motion, to maintain the
mixture velocity of the entire suspension. It also includes a contribution −3φ from
a volume-exclusion effect: a test bubble drags some liquid along with it which is
compensated by a downflow further away; other bubbles cannot access the fluid in
the direct vicinity of the test bubble (as this would require bubbles to overlap) and
therefore sample a net fluid downflow (see Batchelor (1972) and for the application to
bubbles/droplets see Wacholder (1973), albeit that an approximation for the mobility
was used by the latter). The remainder of the linear term in G(φ) is due to near-bubble
interactions.

The drift velocity strongly depends already on the microstructure in the dilute
limit. If the probability of finding a particulate near a test particulate is uniform
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outside the excluded volume, as is appropriate for colloidal dispersions (Glendinning
& Russel 1982) and as is assumed in the works cited above, interactions with
nearby particulates result in G(φ)∼ 1− O(φ), whereas for a microstructure wherein
a dominant contribution comes from particulates at a distance that corresponds
to the mean separation (Vp/φ)

1/3, with Vp the particulate volume, one expects
G(φ) = 1 − O(φ1/3) (e.g. Davis & Acrivos 1985). A well-known example of the
latter is a microstructure wherein particulates are arranged in a regular, ordered array.
For bubbles arranged in an ordered array, G(φ) = 1 − bφ1/3 + O(φ2), where the
coefficient b is known for several cubic arrays and the O(φ) term cancels if the
gas viscosity is ignored compared to the liquid viscosity (Sangani & Acrivos 1983;
Sangani 1987). The microstructure is not known a priori, therefore these limiting
cases of random and ordered arrays may provide the means to determine the possible
magnitude of the effects of order of the microstructure.

Besides Stokes flows, a weakly viscous theory based on potential-flow interactions
has also been developed (Spelt & Sangani 1998). Exceptionally, the probability density
function for a configuration of identical spherical bubbles is known in that case. The
pair probability shows a peak around the horizontal plane and a deficit for bubbles
aligned vertically, both vanishing at large separation, if the drift velocity is not small
compared to bubble velocity fluctuations, as may be expected from a Bernoulli effect.
The averaged drag coefficient could therefore be determined analytically in the dilute
limit whilst accounting for the microstructure. In the present notation, this yielded
G(φ) = 1 − (17/8 + 9A/20)φ + O(φ2), where A is the ratio of U2 and the root-
mean-square bubble velocity; a Padé approximation for use beyond the dilute limit
is presented in Spelt & Sangani (1998), and an extension for non-spherical bubbles
at small A is also available (Kushch et al. 2002). The dependency on A enters there
because it affects the pair probability density function in that analysis, this being
nearly isotropic at low A whilst showing a preference for bubbles rising nearly side
by side at large A. Thus, in this description, the microstructure is determined from
the significance of the drift velocity compared to that of bubble velocity fluctuations,
the latter being the result of local inhomogeneities such as the shear rate (see Spelt
& Sangani 1998).

Beyond these theoretical approaches, direct numerical simulations (DNS) of
unbounded buoyancy-driven flows, in the sense of resolving the full Navier–Stokes
equations coupled with the bubble dynamics and deformation, have been performed
in prior work for cubic domains that contain a finite number of freely moving
bubbles subject to periodic boundary conditions. Conveniently, this set-up allows
variation between microstructures. On the one hand, for a given volume fraction,
using a large number of bubbles in the unit cell is of interest as a model of real
suspensions, although convergence with number of particulates would have to be
verified, since for Stokes interactions this may be slow (Phillips, Brady & Bossis
1988), or a dependency on system size may even persist (Guazzelli & Hinch 2011);
in the studies cited below, typically O(10)–O(100) bubbles are used in a unit cell
and the effect of system size is found to be small. At the other extreme, the special
case of one freely rising bubble in the unit cell, one recovers a simple cubic array.
We shall herein refer to this set-up with more than one bubble in the unit cell as a
free array and to that with one bubble in the cell as an ordered array.

For spherical bubbles rising at low (O(1)) Reynolds numbers, the DNS results of
Esmaeeli & Tryggvason (1998) suggest that G(φ) for free arrays may be similar to
that predicted for ordered arrays, but the system studied was concluded to be too small
to draw definitive conclusions. Bunner & Tryggvason (2003) found that their results
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at moderate (O(10)) Reynolds numbers could be represented by G(φ)= 1− φ1/3 for
spherical bubbles in free arrays, and a Richardson–Zaki expression with exponent
n= 3 for deformable bubbles, but no theoretical justification for these scalings could
be offered beyond an observed difference in preferential spatial configurations of
bubbles, discussed further below. Also, the expressions for G(φ) inferred in these
pioneering studies could only be fitted from just a few different values of the volume
fraction comprised between 2 % and 12 % and their validity outside this range seems
unclear. Further results for free arrays at moderate Reynolds numbers were obtained
by Yin & Koch (2008), for volume fractions ranging from 1 % to 25 %, using a lattice
Boltzmann method. They used O(100) bubbles in a periodic cell, rather than O(10)
in most of the early studies cited above, and imposed a spherical shape facilitated by
a force balance that included the surface integral of the traction acting on the bubble
and the buoyancy force. Their results demonstrate that G(φ) is not well fitted by the
Richardson–Zaki formula, and they suggest that this is associated with the anisotropic
microstructure of bubbly suspensions in this regime. Gillissen, Sundaresan & Van Den
Akker (2011) conducted similar simulations using a combination of lattice Boltzmann
and immersed boundary methods, and obtained G(φ) = 1 − O(φ1/3) for spherical
bubbles rising at small to moderate Reynolds number, in qualitative agreement with
earlier studies (Esmaeeli & Tryggvason 1998; Bunner & Tryggvason 2003).

From these prior studies, the microstructure, along with the drift velocity, is
known to vary significantly with bubble Reynolds number and shape. For spherical
bubbles rising at O(100) Reynolds number, strong preference for horizontal alignment
is observed in the simulated pair probability (Esmaeeli & Tryggvason 2005), in
agreement with the trends reviewed above for the idealized potential-flow interactions.
The anisotropy in microstructure is larger than that observed in the experiments of
Zenit et al. (2001), possibly because of bubble deformation: indeed the simulations
of Esmaeeli & Tryggvason (2005) revealed that oblate ellipsoidal bubbles do not
form horizontal rafts but instead are rather uniformly distributed. At O(10) Reynolds
number, the dynamics of bubble–bubble interactions is dominated by wake effects.
A vertical pair of spherical bubbles changes its orientation to horizontal through a
drafting–kissing–tumbling mechanism, resulting in preferential side-by-side alignment
(Esmaeeli & Tryggvason 1999; Bunner & Tryggvason 2002a; Yin & Koch 2008),
whereas deformable bubbles tend to organize in vertical structures owing to the
reversed lift force which attracts a bubble in the wake of its preceding neighbour
(Bunner & Tryggvason 2003). These effects decrease with decreasing Reynolds
number and nearly no preference is observed at O(1) Reynolds number (Esmaeeli &
Tryggvason 1998; Cartellier & Rivière 2001).

In the DNS studies cited thus far, the microstructure is allowed to develop naturally.
For use of the results in general flows, wherein microstructure can be affected by weak
gradients, it is necessary to know the role of and sensitivity to the microstructure.
DNS results for rising deformable bubbles in an ordered arrangement have been
conducted by Sankaranarayanan et al. (2002), using a lattice Boltzmann method. An
empirical correlation of Richardson–Zaki form was used to represent the results for
a vast range of flow regimes, albeit for 5 6 φ 6 25 % and with the reservation that
the correlation does not reduce to the analytical result discussed above for creeping
flows of ordered arrays.

Despite their apparent artificiality, ordered arrays of bubbles, as well as their
relevance to real bubbly flows, certainly deserve further investigation. Firstly, a
number of prior simulations and experiments reviewed above for 1 . Re . 1000
found a bubble rise velocity scaling as φ1/3 (Esmaeeli & Tryggvason 1998; Garnier
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et al. 2002; Bunner & Tryggvason 2003; Gillissen et al. 2011). This scaling is the
same as that obtained assuming a periodic arrangement of the bubbles, albeit under
the Stokes flow approximation (Sangani & Acrivos 1983). The study of ordered
arrays beyond the Stokes flow limit is therefore of fundamental interest in order to
connect theoretical, numerical and experimental work. Secondly, prior experimental
and numerical work on bubbly flows at moderate to high Reynolds number has shown
that the magnitude of the bubble velocity fluctuations is substantially smaller than
the bubble rise velocity (Zenit et al. 2001; Bunner & Tryggvason 2002b; Esmaeeli
& Tryggvason 2005; Martinez-Mercado, Palacios-Morales & Zenit 2007), at least
when the gas volume fraction remains below approximately 10 %. This further
motivates a study of a representation of bubbly suspensions by ordered arrays (zero
bubble velocity fluctuations). Thirdly, only experimental investigations can assess the
relevance (or lack thereof) of the ordered model to describe real bubbly suspensions.
By re-examining prior experimental data (Garnier et al. 2002; Martinez-Mercado
et al. 2007; Riboux, Risso & Legendre 2010; Colombet et al. 2015), we will show
that available measurements support the idea that ordered arrays are indeed relevant
to bubbly flows of practical interest.

In this paper, we investigate the ordered and free rise of bubbles at low and
moderate Reynolds numbers over a wide range of volume fractions, using DNS and
analysis; the problem statement is presented in § 2 and the numerical methods in § 3.
The first objective (in § 4) is to determine the connection between the DNS results
and theory for dilute ordered systems and, beyond the dilute limit, the connection
between the DNS results and prior work on bubble pairs, which have been studied
analytically (e.g. Harper 1970, 1997), experimentally (Katz & Meneveau 1996) and
computationally (Yuan & Prosperetti 1994; Legendre, Magnaudet & Mougin 2003;
Hallez & Legendre 2011). For that purpose, the first effects of inertia are determined
analytically, and a comprehensive parametric DNS study is presented at low and
moderate Reynolds number in § 4.1. The study includes ordered suspensions of
strongly deformed (skirted) bubbles that have not been studied thus far. The results
are summarized in a practical relation that covers a wide range of flows and reduces
to analytical results in the dilute limit. In particular, the DNS and the theory in the
dilute limit demonstrate that G(φ) is not monotonic at low φ; Bunner & Tryggvason
(2002a) and Roghair et al. (2011) remarked that G(φ) increases at small volume
fractions, but did not investigate this further. The surprising dynamics of ordered
suspensions is then investigated in § 4.2. A steady oblique rise was observed in the
DNS in some cases, as a precursor to unsteady (periodic and non-periodic) behaviour.
Oblique motion of two-dimensional square arrays of bubbles has been observed
previously (Sankaranarayanan et al. 2002; Sankaranarayanan & Sundaresan 2002;
Theodoropoulos et al. 2004), but remains essentially unexplained. We support the
existence of oblique rise for ordered suspensions with analysis in the dilute limit, and
demonstrate that the inferred lift coefficient is similar to that obtained for the rise of
bubble pairs. The second objective of the present work is to revisit (in § 5) arrays of
free bubbles in light of these findings for ordered arrays, and to contrast and compare
these two systems. In § 5.2, numerical results are presented for freely evolving bubbly
suspensions at small and intermediate volume fractions and similarities with ordered
systems are highlighted. These are supported by a comparison with experimental data
in § 5.3. Finally, conclusions are presented in § 6.
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2. Mathematical formulation
2.1. Problem statement

We consider an infinite, homogeneous, monodisperse suspension of bubbles rising
under the effect of buoyancy in otherwise quiescent liquid. The density and viscosity
of each fluid, as well as the surface tension, are assumed to be constant. The
suspension is represented by the periodic repetition of a cubic unit cell containing a
given number of bubbles. The gravity is aligned with a primary axis of the periodic
array (due to the large number of parameters already involved in the problem, the
influence of the orientation of gravity is not investigated here).

The behaviour of this system depends on nine parameters: the number of bubbles
Nb in the cell, the gas volume fraction φ, the gravitational acceleration g, the bubble
volume or, more conveniently, its characteristic size db defined as the diameter of the
volume-equivalent sphere and the physical properties of the two fluids, namely their
densities (ρd, ρc), their viscosities (µd, µc) and the surface tension (γ ). The subscripts
d and c refer to the disperse (gaseous) and continuous (liquid) phases, respectively.

In addition to the gas volume fraction and to the number of bubbles, four
independent dimensionless groups can be constructed from the remaining parameters.
Two of these are the ratios of the gas density and viscosity to those of the surrounding
liquid. These are usually very small and of the same order for most gas–liquid
systems of practical interest. As a consequence their influence will not be investigated,
and unless otherwise mentioned, these parameters will be set to ρd/ρc = 10−3 and
µd/µc= 10−2, which approximately corresponds to air bubbles in water. The last two
dimensionless numbers are the Archimedes number

Ar=
√
ρc|ρd − ρc|gd3

b

µc
, (2.1)

or equivalently the Galilei number Ga = Ar2, and the Bond number (also known as
the Eötvös number),

Bo= |ρd − ρc|gd2
b

γ
. (2.2)

The Archimedes and Bond numbers can be defined a priori, without the knowledge
of the bubble velocity, and are therefore traditionally employed to describe the
macroscopic conditions of buoyancy-driven bubbly flow (numerical) experiments.

At time zero, the bubbles are released from rest and start rising. The time evolution
of the system is monitored through U(t), defined as the average drift velocity of the
bubbles and computed at any time from

U= 〈u〉d − 〈u〉, (2.3)

where 〈 〉 denotes a volume average over the entire unit cell and 〈 〉d denotes a volume
average over the disperse phase only. In most situations U is parallel to gravity, so
there is no need to distinguish between |U| and the vertical component of U. For
simplicity, and unless mentioned otherwise, U is used to denote the (positive) vertical
component of U. The drift velocity is used as the characteristic velocity scale to define
the dynamic counterparts of the Archimedes and Bond numbers: the Reynolds number

Re= ρcUdb

µc
(2.4)
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and the Weber number

We= ρcU2db

γ
= BoRe2

Ar2
, (2.5)

which compare the effects of inertia, viscosity and surface tension. In a system at
equilibrium for vertical rise, the hydrodynamic force acting on a bubble, whose
magnitude is denoted f , equals the buoyancy force. It follows that the Reynolds
number is related to the Archimedes number through

CD = 4
3

Ar2

Re2
with CD = 8f

πd2
bρcU2

, (2.6)

where CD is the drag coefficient.
Assuming that a (possibly quasi-)steady state is reached independently of the initial

conditions (which is not necessarily the case, but we will come to that later), the
(quasi-)steady average bubble drift velocity can be written as U = U(Nb, φ, Ar, Bo).
Similarly the (quasi-)steady average bubble shape, as described by a parameter χ
(which will be specified later, typically an aspect ratio), reads χ = χ(Nb, φ, Ar, Bo).
Our first goal is to characterize U(φ, Ar, Bo) and χ(φ, Ar, Bo) when the bubbles
have a fixed position relative to their neighbours (Nb = 1), and to understand how
the imposed flow conditions (Ar, Bo) affect the dependency of these quantities on
the volume fraction. Our second goal is to assess the effect of introducing additional
degrees of freedom (Nb > 1) into the system, and to compare the behaviour of freely
evolving suspensions (sufficiently large Nb) with that of ordered suspensions (Nb= 1).

2.2. Flow regimes
Since we want to assess the effect of volume fraction under various conditions of
Archimedes and Bond numbers, it seems natural to refer to the limiting case of a
single bubble released in an unbounded quiescent liquid under the same conditions.
At steady state, this bubble is characterized by its shape (and an associated aspect
ratio χ0), and its terminal velocity U0, usually expressed in the form of a terminal
Reynolds number Re0= ρcU0db/µc. The subscript 0 will be used hereinafter when an
isolated bubble is considered.

A rather general description of the equilibrium state reached by a buoyancy-driven
bubble is given in the shape regime diagram of Grace (1973). This diagram
splits the (Bo, Re0) parameter space into a number of subregions and maps them
onto the corresponding shape regimes. It also provides a graphical correlation
between the Bond number, the Reynolds number and the Morton number Mo =
(|ρd − ρc|gµ4

c)/(ρ
2
cγ

3)= Bo3/Ar4, which is often used in experimental work in place
of the Archimedes number. In a simplistic manner, the terminal Reynolds number
increases (nonlinearly) with the Archimedes number, while the bubble departs from
a spherical shape as the Bond number increases.

We considered nine different cases defined by the pair (Ar, Bo). A complete
description of these cases and of the corresponding flow regimes is provided in
table 1. They cover Reynolds numbers ranging from 0 to 60 and several shape
regimes: spherical (cases ‘S’), ellipsoidal (cases ‘E’) and dimpled ellipsoidal cap
(case ‘C’). The parameters for case C correspond to a single-bubble experiment of
Bhaga & Weber (1981), which was later reproduced numerically by Hua, Stene & Lin
(2008). The terminal Reynolds number and shape of the equivalent isolated bubble
have therefore been determined directly from their data. For the other cases, the
single-bubble terminal Reynolds number and aspect ratio have been estimated using
the correlations for spherical and ellipsoidal bubbles recommended in the review of
Loth (2008).
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Case Bo Ar Mo Shape Re0 We0 χ0

S0 0.38 0.15 1.00× 102 Spherical 1.94× 10−3 6.11× 10−5 1.000
S1 0.38 5.03 8.60× 10−5 Spherical 1.80 4.88× 10−2 1.007
S2 0.38 10.0 5.49× 10−6 Spherical 5.94 0.134 1.015
S3 0.38 15.3 1.00× 10−6 Spherical 12.1 0.236 1.024
S4 0.38 27.2 1.00× 10−7 Spherical 31.4 0.507 1.064
S5 0.38 40.7 2.00× 10−8 Spherical 62.5 0.897 1.124
E1 2.0 29.9 1.00× 10−5 Ellipsoidal 31 2.1 1.32
E2 5.0 30.0 1.54× 10−4 Ellipsoidal 26 3.8 1.62
C 243 15.2 2.66× 102 Dimpled ellipsoidal-cap 7.77 63.2 1.89

TABLE 1. Simulated regimes: Bo, Ar and Mo = Bo3/Ar4 are input parameters (with
ρd/ρc= 10−3 and µd/µc= 10−2). The shapes, Re0, We0=BoRe2

0/Ar2 and χ0 of an isolated
buoyancy-driven bubble at steady state are also given. Shapes are predicted by the diagram
of Grace (1973). The values of Re0 are estimated from the correlation of Mei, Klausner
& Lawrence (1994) for spherical bubbles (cases S0–S5) and from the correlation of Loth
(2008) for ellipsoidal bubbles (cases E1 and E2); the experimental value measured by
Bhaga & Weber (1981) is reported for case C. The aspect ratio χ0 is estimated from the
correlation of Loth (2008) for all cases except case C, for which it is directly measured
from visualizations of Hua et al. (2008).

2.3. Governing equations
In both phases the fluid motion is governed by the incompressible Navier–Stokes
equations

∇ · un = 0, (2.7)
∂ρnun

∂t
+∇ · ρnunun =∇ · Tn +Gn where Tn =−pnI +µn(∇un +∇uT

n ), (2.8)

where n = {c, d} is used here to denote either phase, u is the velocity field, T the
stress tensor, I denotes the identity tensor, p the pressure field and G is the sum of
external forces per unit volume, given by Gn = (ρn − 〈ρ〉)g. The first term in this
last expression, ρng, is the weight of a unit volume of fluid. Because the suspension
we consider is infinite, i.e. not bounded by walls, an additional body force −〈ρ〉g,
with 〈ρ〉 the system average density, is required to prevent the entire system from
accelerating in the downward vertical direction. (This body force is equivalent to the
average hydrostatic pressure gradient that would be generated by the base of a flow
container to balance the total gravitational force on the mixture.)

These equations are coupled through the appropriate boundary conditions at the
interface. In the presence of viscous effects a no-slip condition is applied, which,
combined with the absence of mass flux across the interface, leads to

[u] = 0, (2.9)

where [X]=Xc−Xd denotes the jump of a variable across the interface. Neglecting any
variation of surface tension along the interface, the shear stress is continuous across
it and the jump of normal stress is balanced by the curvature force per unit area:

[n · T ] = γ κn, (2.10)
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where n is the unit vector normal to the interface and directed outward from the
bubbles and κ is the interface curvature defined by κ = ∇ · n (e.g. Tryggvason,
Scardovelli & Zaleski (2011), appendix A.4).

This set of equations is solved numerically within a periodic unit cell using the
methods described in the next section.

3. Numerical methods
A comprehensive description of our numerical approach is provided in § A.1. A

brief overview of its salient features is given hereinafter.
Our approach relies on the one-fluid formulation of the governing equations. In

this formulation, the different fluids are treated as a single phase with discontinuous
density and viscosity, and surface tension is incorporated as a singular source term.
This results in the standard continuum surface force model of Brackbill, Kothe
& Zemach (1992). To circumvent numerical difficulties due to the introduction
of discontinuous and singular functions, the interface is given a finite thickness
proportional to the grid spacing. Surface tension is therefore treated as a volume
force distributed over several mesh points and material properties vary continuously
from one phase to the other.

The incompressible Navier–Stokes equations are integrated in their one-fluid form
by a projection method (Chorin 1968), and the moving interface separating the two
fluids is captured by a level-set method (Osher & Sethian 1988; Sussman, Smereka
& Osher 1994). The velocity field is then solution of the system of equations:

∂ρu
∂t
+∇ · ρuu=−∇p+∇ ·µ(∇u+∇uT)+ (ρ − 〈ρ〉)g− γ κ∇Hε (3.1)

∇ · u= 0, (3.2)

where the interface curvature is calculated from (e.g. Prosperetti & Tryggvason (2007),
§ 3.5)

κ =∇ ·
( ∇ψ
|∇ψ |

)
, (3.3)

the variable density and viscosity are given by

ρ =Hερc + (1−Hε)ρd, µ=Hεµc + (1−Hε)µd, (3.4a,b)

and Hε denotes the smoothed Heaviside function

Hε(ψ)=


1 if ψ > ε,
0 if ψ <−ε,
1
2

[
1+ ψ

ε
+ 1

π
sin
(

πψ

ε

)]
if |ψ |6 ε,

(3.5)

where ε is half the interface thickness (ε = 1.51x, with 1x the grid spacing). ψ
denotes the level-set function, positive in the continuous phase and negative in the
disperse one. It is the solution of the following advection equation, in which the
zeroth-order approximation of the additional source term proposed by Sabelnikov,
Ovsyannikov & Gorokhovski (2014) is embedded:

∂ψ

∂t
+ u · ∇ψ = A(u, ψ)ψ, with A(u, ψ)=∇iψ∇iuj∇jψ (3.6)
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(A(u,ψ) is the local zeroth-order approximation of the source term in the region close
to the interface). The level-set function is reinitialized as a signed distance function
at each time step using the procedure devised by Russo & Smereka (2000). These
modifications yield better numerical efficiency and accuracy compared to the original
level-set method.

The major drawback of basic level-set methods is their poor ability to conserve
the mass (volume) of each phase. When using high-order schemes and sufficient
resolution, the volume change between two successive time steps is often negligible.
It is, however, not exactly zero, and may even become substantial when accumulated
over very long integration times. For this reason, we enforce volume conservation
using the correction proposed by Sussman & Uto (1998) (also used by e.g. Spelt
(2006)): at the end of each time step, the iso-contours of the level-set function
are slightly shifted such that the volume of each phase is conserved exactly. We
demonstrate in § A.2 that the loss of accuracy induced by this correction is negligible
compared to the overall numerical error made in the interfacial region, and has
therefore no adverse effect on the flow dynamics.

Our time integration algorithm is based on third-order and second-order total-
variation-diminishing (TVD) Runge–Kutta schemes for the level-set advection and
reinitialization equations, respectively, and on a mixed Crank–Nicolson/third-order
Adams–Bashforth scheme for the Navier–Stokes equations. The spatial discretization
is carried out using a standard finite-difference/finite-volume discretization on a
uniform Cartesian staggered grid: fifth-order weighted-essentially-nonoscillatory
(WENO) schemes are used for advection terms and second-order centred schemes
are used otherwise. Periodic boundary conditions are imposed at the bounds of the
computational domain.

A standard benchmark test for the simulation of disperse flows consists in
comparing the terminal velocity and shape of an isolated bubble to those obtained
experimentally in various regimes. We do not simulate here the rise of a single bubble
in an unbounded fluid but of an array of bubbles. A tempting idea to approach this
ideal situation would be to introduce a single bubble in a very large unit cell, so that
the influence of periodicity could be neglected. We will see in § 4 that even at very
low volume fractions (very large domains, in the limit of what is computationally
feasible), the bubbles’ rise velocity and shape are still significantly affected by their
interactions, making such a comparison to experiments irrelevant. The code has
therefore been validated against available solutions for regular (Nb = 1) and free
(Nb > 1) arrays of rising bubbles.

We reproduced the numerical simulations of Esmaeeli & Tryggvason (1999) who
considered arrays of deformable bubbles rising at moderate Reynolds number (case
E1). As shown in figure 1, the transient rise of both regular and free arrays of bubbles
is reproduced accurately by our code. We also compared our simulations with the
theory of Sangani (1987) for cubic arrays of spherical bubbles in the creeping flow
limit (case S0). The evolution of the steady drift velocity with volume fraction
is shown in figure 2. Excellent agreement between the numerical and analytical
solutions has been obtained. The effect of resolution is also shown in the same
figures. Additional benchmark and sensitivity tests can be found in § A.2. Further
comparison against prior work is included where prior work is available in subsequent
sections.

Grid convergence tests have been carried out systematically for each of the cases
reported in table 1 in an ordered array configuration and for one value of the volume
fraction. A resolution of 20 grid cells per bubble diameter was found to be sufficient
for all regimes except for case S5, which requires a resolution of 30 grid cells per
diameter because of the higher Reynolds numbers associated with this regime, and for
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FIGURE 1. Time evolution of the drift velocity of arrays of deformable bubbles rising at
moderate Reynolds numbers (case E1). Solid line: prior DNS of Esmaeeli & Tryggvason
(1999). Non-solid lines: present DNS. (a) Ordered array (Nb = 1, φ = 13 %, ρd/ρc =
µd/µc = 0.1), different resolutions (db is the bubble volume-equivalent diameter, 1x the
grid spacing). (b) Free array (Nb = 8, φ = 6.5 %, ρd/ρc = µd/µc = 0.05), with three
realizations of the flow.
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FIGURE 2. Steady drift velocity of an ordered array of spherical bubbles normalized by
that of an isolated bubble in the Stokes flow regime (case S0) as a function of volume
fraction, compared with the analytical solution of Sangani (1987). The effect of resolution
is shown for φ1/3=0.4 (db is the bubble volume-equivalent diameter, 1x the grid spacing).

case C, for which a resolution of 60 grid cells per diameter was needed for capturing
the thin skirts of the bubbles. With these resolutions, the error in the steady rise
velocity due to the grid spacing is not larger than 2 % in case C and 1 % in the
other cases. For a given case, the same resolution is used for all volume fractions and
for both ordered and free arrays. The choice of the time step is constrained by the
condition of numerical stability and the error due to the time discretization is smaller
than that due to the spatial one.

4. Ordered arrays
We examine in this section the dynamics of cubic arrays of deformable bubbles

(‘ordered arrays’) in the presence of liquid inertia. The main objective here is to
connect DNS results, theoretical analysis for dilute systems and prior work on bubble
pairs.
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Specifically, the effect of volume fraction on the rise velocity and shape of
deformable bubbles in a simple cubic array is revisited here. Direct numerical
simulations have been performed for the nine sets of flow conditions summarized
in table 1. For each of these cases, the volume fraction φ = π/6(db/h)3 (where h
is the linear size of the unit cell of the array) was varied from 0.1 % to 30 % by
changing the size of the computational domain (i.e. the lattice spacing) while keeping
the bubble size constant.

Initially, both fluids were at rest, the bubbles were spherical and gravity was
switched on at time zero. After a transient regime, various forms of bubble motion
could be observed: steady vertical rise, steady oblique rise or unsteady oblique rise.
The steady vertical rise is first examined in § 4.1. Other types of motions are then
discussed in § 4.2.

Simulations were run until the bubble drift velocity became either constant or
statistically stationary. This steady state is independent of the initial oblateness of
the bubbles, and is reached when the velocity disturbances induced by the bubbles’
motion have diffused in all directions throughout the liquid, i.e. in a time of order
O(h2ρc/µc). As a consequence, from a numerical point of view, the investigation of
small volume fractions (large domain sizes) is limited both by the needed number of
grid points (∼h3) and by the computation time (∼h2).

4.1. Steady vertical rise of bubbles
The cubic lattice of bubbles is not only convenient from a computational point of
view, it is also attractive from a theoretical standpoint since the solution only needs
to be determined in a unit cell. When the bubbles rise steadily along straight paths
parallel to an axis of the periodic array (as is the case in most of the cases presented
here since gravity is oriented along a lattice axis), the symmetries of the problem
greatly simplify the analysis. We determine in this context an analytical expression
accounting for the first effect of inertial interactions in cubic arrays of spherical
bubbles (at small Reynolds numbers). Outside this narrow range of validity, the
influence of the volume fraction on the steady rise velocity and shape of deformable
bubbles will be determined from our numerical simulations.

4.1.1. Spherical bubbles at low to moderate Reynolds number
The correction to the drift velocity due to finite volume fraction in the Stokes flow

regime has been determined by Sangani (1987) for cubic arrays of spherical fluid
particles (bubbles or drops). The first term arises from a point-force approximation
of the particles and reads, for a simple cubic array,

U
U0,Stokes

− 1=−1.1734µ∗φ1/3 +O(φ), (4.1)

where U0,Stokes is the terminal velocity of a spherical fluid particle translating through
an unbounded ambient fluid in Stokes flow conditions (Hadamard 1911; Rybczynski
1911):

U0,Stokes = 1
12
|ρc − ρd|gd2

b

µ∗µc
, with µ∗ = µc + 3µd/2

µc +µd
. (4.2)

The case of a rigid sphere (µd/µc → ∞) is recovered as µ∗ → 3/2, whereas the
case of a clean bubble (µd/µc → 0) corresponds to the limit µ∗ → 1. Numerical
simulations have been carried out for spherical bubbles rising at very small Reynolds
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numbers (case S0, Re0 = 1.94 × 10−3), and excellent agreement with the theory has
been obtained over a wide range of volume fractions, as shown in figure 2. Note that
the relation between U and φ1/3 seems linear even at high volume fraction: indeed,
even though the analytical solution of Sangani (1987) includes O(φ) and O(φ2) terms,
for clean bubbles the O(φ) correction is zero and the O(φ2) correction is negligible
compared to the O(φ1/3) term (whereas these corrections are substantial for solid
particles).

For small but non-zero Reynolds numbers, the Stokes equations are still valid near
and inside the fluid particles, but should be replaced by the Oseen equations farther
away since inertial effects become comparable to viscous ones at distances from the
particle of order O(db/Re). The first correction to the drag force arising from inertial
effects has been determined by Hill, Koch & Ladd (2001) for a cubic array of solid
spheres. The extension of their result to bubbles and drops is straightforward and is
provided in appendix B. We show there that the correction to the bubble drift velocity
due to liquid inertia and hydrodynamic interactions can be approximated at any φ� 1
by

U
U0,Stokes

− 1≈−1
8
µ∗Re− 1.1734µ∗φ1/3 + 25

8
µ∗

Reφ1/3

Re+ 25φ1/3
. (4.3)

The first term accounts for the effect of liquid inertia on an isolated bubble, the second
term results from Stokes interactions and the last term captures the effect of inertial
interactions. The significance of each of these terms as a function of volume fraction
can be understood as follows.

At zero volume fraction, the drag exerted on a single bubble normalized by the
Stokes drag increases linearly with the Reynolds number (Brenner & Cox 1963). This
results in the negative correction to the drift velocity

U0

U0,Stokes
− 1=−1

8
µ∗Re, (4.4)

where U0 is the terminal velocity of the isolated bubble. At small volume fraction,
inertial interactions result in a positive O(φ1/3) correction which overwhelms the
negative O(φ1/3) Stokes flow correction

U −U0

U0,Stokes
≈−1.1734µ∗φ1/3 + 25

8
µ∗φ1/3 ≈ 2.0µ∗φ1/3 when φ1/3� Re, (4.5)

so the net result is a drift velocity that increases with φ1/3. At large volume
fraction (with respect to the Reynolds number), the drift velocity correction due
to hydrodynamic interactions reads

U −U0

U0,Stokes
=−1.1734µ∗φ1/3 + 1

8
µ∗Re

(
1− Re

25φ1/3

)
when Re� φ1/3� 1. (4.6)

The O(Re) contribution from inertia is negligible compared to the Stokes O(φ1/3)

correction: the drift velocity therefore overall decreases linearly with φ1/3, as for
creeping flows.

The drift velocity U can be computed, for any φ� 1, by finding the positive root
of (4.3) (quadratic in U). The solution for various Archimedes numbers is shown in
figure 3(a). Note that higher Archimedes number corresponds to higher isolated-bubble
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FIGURE 3. Steady drift velocity of an ordered array of spherical bubbles, normalized by
the terminal velocity of an isolated bubble in Stokes flow conditions, as a function of
volume fraction for small Archimedes numbers. (a) The effect of small but finite Ar, from
Oseen flow analysis. (b) Comparison of analytical and numerical solutions for Ar= 5.03
(case S1). Analytical solutions are obtained from (4.3). Symbols in (b): ——, analysis;u,
DNS; E, isolated bubble, estimated from Mei et al. (1994); – – – –, numerical fit of the
form of (4.8) matching DNS and isolated-bubble data; andp and · · · · · ·, numerical data
and fit by a Richardson–Zaki relation from Sankaranarayanan et al. (2002).

Reynolds number: it can be shown from (2.1), (2.4), (4.2) and (4.4) that in this regime

Re0 = 1
12

Ar2

µ∗

(
1+ Ar2

96

)−1

. (4.7)

The non-monotonicity of the function U(φ)/U0,Stokes at finite Archimedes number
contrasts with the case of Stokes flow, for which this function is strictly decreasing.
This behaviour results from the competition between ‘cooperative’ long-range inertial
interactions, which increase the drift velocity and ‘hindering’ viscous interactions
which reduce it. At small volume fraction, inertial effects dominate, whereas at large
volume fraction the liquid is more confined, inertial forces therefore cannot prevail
over viscous ones and a Stokes flow behaviour is recovered.

The Oseen approximation is limited to Re< 1, which for an isolated clean bubble
approximately corresponds to Ar < 3.5. For Ar = 3, the maximum of U/U0,Stokes

is obtained for φ = 6 × 10−6. Direct numerical simulation of such a small volume
fraction is prohibitively expensive, so our analysis cannot be confirmed by numerical
experiments in its expected range of validity. Nevertheless, a comparison between the
solution obtained from (4.3) and DNS for Ar= 5.03 is shown in figure 3(b), together
with the numerical data obtained by Sankaranarayanan et al. (2002) for the identical
flow regime using the lattice Boltzmann method. In their study, they found that the
effect of volume fraction could be captured by a Richardson–Zaki type of (empirical)
correlation Re = 1.58(1 − φ)4.72. Although their data are well fitted by this relation
over the narrow range of volume fractions they investigated (0.05 < φ < 0.12), our
DNS results show that this expression cannot be used to extrapolate the effect of
volume fraction outside this range. In addition, their correlation gives a drift velocity
at φ = 0 that differs from the terminal velocity of an isolated bubble by more than
10 %. In contrast, the functional dependency of the drift velocity on volume fraction
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FIGURE 4. Steady drift velocity of an ordered array of spherical bubbles, normalized by
the terminal velocity of an isolated bubble in Stokes flow conditions, as a function of
volume fraction for a large range of Archimedes numbers. Symbols, DNS; ——, analytical
Oseen flow solutions obtained from (4.3) for small Ar; – – – –, numerical fits of the form
of (4.8) matching DNS and isolated-bubble data for larger Ar. In case S5, for which the
bubbles’ motion is not steady and/or not parallel to gravity, the crosses are time-averaged
vertical drift velocities.

given by our analysis is in very good agreement with numerical simulations; the
modest difference at small volume fractions arises from the limitation of Oseen
theory to Reynolds numbers less than unity: for an isolated bubble rising in still
liquid, the Oseen flow solution yields Re0= 1.66 whereas the empirical correlation of
Mei et al. (1994) gives Re0 = 1.80.

We now turn to ordered arrays of spherical bubbles rising at moderate Reynolds
numbers. The bubble drift velocity has been determined for Archimedes numbers
ranging from 0 to 40 (cases S0–S5). The numerical results for U(φ)/U0,Stokes are
shown in figure 4 (symbols) together with those of our analysis for small Archimedes
numbers (solid lines). It is remarkable that the evolution of the drift velocity with
volume fraction for Archimedes numbers up to approximately 30 is consistent with
the Oseen flow analysis carried out for Archimedes numbers that are, at best, O(1).
In particular, for Ar = 27.2 (case S4), the predicted increase of the drift velocity
at low volume fraction is confirmed numerically. For Archimedes numbers greater
than 30 (case S5), the drift velocity of a cubic array of spherical bubbles does not
necessarily remain parallel to gravity; we postpone discussion of this to § 4.2.

Figure 5 shows the vertical component of the liquid velocity in a vertical symmetry
plane passing through the centre of a bubble at φ = 0.2 %. The first row corresponds
to spherical bubbles (Bo = 0.38) with increasing Archimedes numbers from left to
right. It reveals that the region of liquid dragged up by each bubble extends quite
far downstream. Since the bubble motion is parallel to a primary axis of the array,
each bubble benefits from this upwards motion by its ‘upstairs’ neighbour(s). This
effect is stronger at larger Archimedes numbers, corresponding to higher Reynolds
numbers and for which the wakes of the bubbles therefore extend further downstream.
Cooperative rise is thus due to the strong wake interactions between vertically
aligned bubbles. Wake interactions are also visible in the transient evolution of the
drift velocity shown in figure 6. This quantity first levels off after an initial transient,
then the bubbles experience a significant acceleration at t = O(h/U0) that is as
they enter into the wake of their first preceding neighbour. At the smallest volume
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FIGURE 5. (Colour online) Vertical component of the liquid velocity normalized by the
bubble drift velocity in a vertical symmetry plane passing through the centre of a bubble
in an ordered array configuration at φ = 0.2 %. Gravity is pointing downward (g=−ge3).
Increasing Archimedes numbers from left to right, and increasing Bond numbers from top
to bottom.
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FIGURE 6. Time signal of the normalized drift velocity of an ordered array of bubbles
at small volume fraction (φ = 0.1 %). The dashed vertical lines denote t = nh/U0, the
characteristic times at which the bubbles enter into the wake of their nth preceding
neighbour. For clarity only short times are shown (the steady state is reached for t ≈
50h/U0).

fraction considered, the time scales separation and the wakes strengths are sufficient
to distinguish the same phenomenon at t≈ 2h/U0: the bubbles’ rise is then influenced
by the wake of their second preceding neighbour, they accelerate again, and so on
until convergence.
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FIGURE 7. Drag coefficient as a function of volume fraction for case S4.C, ordered array;
∗, trailing bubble of a vertically aligned pair within the same conditions (Reynolds number,
separation distance), from Hallez & Legendre (2011);s, isolated bubble, estimated from
Mei et al. (1994).

To complete this analysis we now evaluate how a simple prediction based on
pair interaction compares with our results. We estimate for this the drag coefficient
of the trailing bubble of a vertically aligned pair separated by a distance h (our
lattice spacing) and translating with a velocity U identical to that of the array of
bubbles at the corresponding volume fraction φ = π/6(db/h)3 using the model of
Hallez & Legendre (2011) (equation (6.7) therein). Their expression, which accounts
for potential and wake interactions, has been established for Re > 20, so we show
in figure 7 the results obtained for case S4 and φ1/3 < 0.55, where this condition
is met. At very small volume fraction (φ1/3 . 0.13), the drag acting on a bubble
of the array is comparable to that exerted on the trailing bubble of a pair rising
in line, as expected since in dilute conditions, wake interaction between vertically
aligned neighbours dominates. At elevated volume fraction, the dimensionless distance
between vertically aligned bubbles h/db is smaller, but the drag is no longer governed
primarily by such pair interactions, as the departure from the pair interaction results
is seen to be substantial in figure 7.

4.1.2. Deformed bubbles at moderate Reynolds numbers
We now examine the effect of the Bond number on bubble deformation and on

hydrodynamic interactions. The effect of volume fraction on U/U0 is first shown,
for different values of the Bond number and comparable Archimedes numbers, in
figure 8(a) (Ar ≈ 30) and figure 8(b) (Ar ≈ 15). The data points that are apparently
missing at some intermediate volume fractions for case E1 actually correspond to
bubbles that do not rise steadily and vertically (discussion of these is postponed
to § 4.2 and figure 15a), and only small volume fractions are shown for case C
because bubbles cannot exist at higher φ (instead, unsteady elongated bodies of gas
are obtained). We have also included in figure 8(a) the numerical data obtained by
Bunner & Tryggvason (2002a), who noticed that normalized drift velocities could be
larger than unity at low volume fraction (black crosses). In their study, they estimated
Re0 = 36 by interpolating the data of Ryskin & Leal (1984). Using the correlation
of Loth (2008), as we did for our own sets of parameters, we obtained Re0 = 33.
For consistency we kept this value for replotting their data. Their results follow
approximately the same trend as ours, although their normalized drift velocities are
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FIGURE 8. Normalized steady drift velocity of an ordered array of deformable bubbles
as a function of volume fraction for various Bond numbers. (a) Ar ≈ 30: spherical and
ellipsoidal bubbles. (b) Ar ≈ 15: spherical and dimpled ellipsoidal-cap bubbles. Open
symbols: present DNS. Black crosses: prior DNS of Bunner & Tryggvason (2002a) (Ar=
29.7, Bo= 0.98, ρd/ρc =µd/µc = 0.02). Dashed lines: numerical fits of the form of (4.8)
matching DNS and isolated-bubble data.

slightly lower. This is probably because the effect of the gas viscosity is assumed to
be zero when estimating Re0, a hypothesis better approached by our DNS than by
that from Bunner & Tryggvason (2002a), who used a gas viscosity twice as large.

The shape of U(φ)/U0, specifically its non-monotonicity, is similar to that obtained
for spherical bubbles, but the faster rise at small volume fraction is more pronounced
at higher Bond numbers. The origin of this behaviour becomes clear if one examines
the effect of the Bond number on bubble wakes in figure 5, in which the vertical
component of the liquid velocity is represented in a vertical symmetry plane at small
volume fraction (φ = 0.2 %). Each column corresponds to comparable Archimedes
numbers (Ar ≈ 15 and 30 for the second and third columns, respectively) with
increasing Bond numbers from top to bottom. As the Bond number increases, the
bubbles flatten (as discussed below) and their drag coefficient increases (for a given
Re) as a result of the increase of their frontal area (e.g. Loth 2008). This induces
greater upward liquid velocities in their wakes and therefore stronger cooperative
interactions between in-line objects. The transient evolution of the drift velocity is
shown in figure 6. It is similar to that of spherical bubbles, with accelerations at time
intervals O(h/U0) but a slightly different initial transient in which the time dependence
of acceleration is non-monotonic, a feature related to the bubble deformation from a
sphere to an ellipsoid.

These results can be directly compared with those of Sankaranarayanan et al.
(2002), who found that the evolution of the drift velocity with the volume fraction
follows a Richardson–Zaki relation Re = Re0(1 − φ)n (Richardson & Zaki 1954),
where n is given by an empirical closure relation in terms of Re0Bo1/4/Ar (in the
present notation). The trends predicted by this relation strongly disagree with our
numerical results, and are therefore not shown. Once again, it appears that this power
law dependency on volume fraction may be used to obtain a coarse estimate of the
drift velocity at high volume fraction, but does not capture the complex influence of
hydrodynamic interactions on the rise of cubic arrays of deformable bubbles for low
values of φ.
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FIGURE 9. Fitted coefficients for U(φ)/U0 as given by (4.8): (a) as a function of the
Archimedes number for Bo=0.38, (b) as a function of the Bond number for Ar≈15 (open
symbols) and for Ar≈ 30 (filled symbols). The coefficients are obtained by least-squares
fits of DNS and isolated-bubble data.

To formulate a semi-empirical law for the function U(φ)/U0 consistent with the
Oseen flow analysis and that would be valid for smaller φ values and very deformed
bubbles, we note that the positive root of (4.3) for U can be written in the form

U
U0
= 1+ U0,Stokes

U0
µ∗

C0 − (1.1734+C1)φ
1/3

1+Cm1φ−1/3
, (4.8)

where U0,Stokes is given by (4.2). We have introduced in this expression three fitting
parameters C0, C1 and Cm1 that we have computed for each case by a least-squares
fit of DNS data at finite volume fraction and isolated-bubble data at zero volume
fraction. The fitted values are shown in figure 9. These parameters account for the
effect of inertial interactions (they are zero in the Stokes flow regime, Ar = 0), and
are monotonic functions (increasing and decreasing, respectively) of the Archimedes
and Bond numbers. The fitted expression of the normalized drift velocity is shown
with dashed lines for each case in figure 3(b), figure 4 and figure 8, which show that
the effect of volume fraction is well described by this law for all the flow regimes
considered.

We now investigate the bubbles’ shape. At low Bo (not shown here), the bubbles
remain approximately spherical as volume fraction is varied; the aspect ratio χ (the
maximum bubble width W divided by the maximum bubble height H, see figure 10)
does not deviate from 1 by more than 5 %, due to the low value of the Weber
number. At Bo > O(1), the bubble shape strongly depends on volume fraction, and
is investigated below. For intermediate Reynolds numbers, say 1 < Re < 100, no
theoretical expression of χ is available. At low Re and We a theoretical result is
available (Taylor & Acrivos 1964) for the shape modes introduced below, but this
has been found not to predict accurately results of numerical simulations for an
isolated bubble if We is increased to unity (Ryskin & Leal 1984). The analysis by
Moore (1959) is for values of Re well over 100. Therefore, as a starting point in the
following, the results of numerical simulations of an isolated bubble by Ryskin &
Leal (1984) are used.

We first focus on ellipsoidal bubbles (cases E1 and E2). (The denomination
‘ellipsoidal bubble’ refers to a bubble that is approximately spheroidal with weak
fore-and-aft asymmetry, but does not mean that the bubble shape is strictly ellipsoidal.)
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FIGURE 10. Steady aspect ratio (a,c,e) and shape coefficients (b,d) of bubbles in an
ordered array configuration as a function of volume fraction for: (a,b) case E1 (Bo =
2.0, Ar = 29.9); (c,d) case E2 (Bo = 5.0, Ar = 30.0); (e) case C (Bo = 243, Ar =
15.2). Bubble shapes are shown in grey for the highest and the lowest simulated volume
fractions. Open symbols: DNS. Filled symbol: isolated bubble (aspect ratios estimated
from Loth (2008) for cases E1 and E2 and from Hua et al. (2008) for case C; shape
coefficients estimated from Ryskin & Leal (1984)).

In all the simulations reported here, bubbles are virtually axisymmetric, but may
exhibit significant fore-and-aft asymmetry. In figure 10, we present the aspect ratio
as a function of volume fraction for these cases. Also shown are the first two shape
coefficients a2,3 defined by writing the local bubble radius R(θ) as

R(θ)=
∑

n

anPn(cos θ), (4.9)
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where Pn is the Legendre polynomial of order n and θ is the angle between the
position vector at the bubble surface and the bubble velocity (a0 is the radius of the
sphere with the same volume). The coefficients were obtained from a distribution of
points (at least 500) on the bubble surface and integrating the orthogonality relation
for each Legendre polynomial.

In figure 10(a–d), for both cases E1 and E2, as the volume fraction is increased,
χ decreases monotonically to unity and a2 goes to zero, from approximately their
respective values for isolated bubbles. The corresponding single bubbles (for which
results are shown in the figure with filled symbols, with shape coefficients obtained
from Ryskin & Leal (1984)), are of oblate-ellipsoid shape. This shape is expected
for isolated bubbles at large Re, through a Bernoulli suction effect in the vicinity
of the bubble rim, and is expected also at low Re (Taylor & Acrivos 1964). It
may be anticipated that the demise of this shape at elevated volume fraction is
partly due to the dependencies of Re and We on volume fraction. We have verified,
however, that the empirical correlation by Loth (2008) for the aspect ratio of isolated
bubbles, using the values of these dimensionless groups obtained from the simulations,
although yielding good agreement at φ= 0 gives a very poor prediction of the results
presented in figure 10 (and is therefore not shown). The reduction of suction at
the bubble rim is therefore due to the detailed bubble interactions. In their study
of the hydrodynamic interactions between two spherical bubbles rising side by side,
Legendre et al. (2003) showed that at small to moderate Reynolds number (Re . 30,
as encountered in our study), the transverse force is repulsive and increases when
the separation decreases. Such a reduction or elimination of suction between bubbles
suggests the liquid downflow due to a bubble pair occurs around the pair as a
whole. In a three-dimensional cubic array, although the room for liquid to flow down
with little opposition is reduced further (at four sides along a bubble rim), some
remains present along vertical edges of each cell in the array. Therefore, any suction
effect normally arising at the rim of a bubble would be reduced in between bubbles
lying in the same horizontal plane. This may be somewhat countered by an increase
elsewhere along the bubble periphery (if not at a greater distance from the bubble),
but a variation in curvature is opposed by surface tension.

In addition to this reduction in aspect ratio, the fore-and-aft asymmetry of the shape
of an isolated bubble is altered significantly by the finite volume fraction. For single
bubbles, cases E1 and E2 are near the boundary between a low-Re regime of bubbles
with a blunt tail and, at the same We but larger Re, a regime of bubbles with a flat
nose (Ryskin & Leal 1984); only a slightly flattened nose is observed, mostly in case
E2, resulting in a positive value of a3 in (4.9). The results in figure 10(b,d) show that
already at small but finite volume fraction this asymmetry is reversed. The bubble
nose becomes rather pointed and the tail blunt as the volume fraction is increased
further. This tendency for oblate ellipsoidal bubbles arranged in regular arrays to
have their nose pulled upwards at finite volume fraction has been observed previously
by Sankaranarayanan et al. (2002), and attributed to a wake effect. Indeed Hallez &
Legendre (2011) showed that in the present range of Reynolds numbers, two spherical
bubbles rising in line are attracted toward each other for separation distances greater
than approximately 1.3 bubble diameter, which would be equivalent to φ1/3 = 0.62,
a value close to the upper bound of the range of volume fractions we consider. To
investigate this further, the amplitude of the P3 mode in (4.9) is included in figure 10.
It is seen that in concentrated arrays this becomes as significant as that of the P2
mode. The presence of successive bubbles in each other’s wakes does reduce the
variation in velocity magnitude between them, as can be seen in figure 11(a,b). The
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FIGURE 11. (Colour online) Influence of volume fraction on the deformation of an
ordered array of oblate ellipsoidal bubbles (case E2): relative velocity (urel = u − 〈u〉d)
and pressure fields in a vertical symmetry plane passing through the centre of a bubble.
Increasing volume fractions from left to right: (a,c) φ = 0.1 %, U/U0 = 1.34 and (b,d)
φ = 13 %, U/U0 = 0.73. (a,b) Magnitude of the liquid relative velocity in the entire unit
cell. (c,d) Total pressure (including the mixture-average hydrostatic component) near and
inside a bubble. Gravity is pointing downward (g = −ge3). The black lines show the
interface location.

significance of the stagnation-point flow at the bubble nose is thereby reduced as
volume fraction is increased, and the large dynamic pressure at a stagnation point
in the liquid is reduced (the pressure field is shown in figure 11c,d), along with the
magnitude of normal deviatoric stress. Both these result in an increase in the jump
in normal stress and hence an increase in interface curvature.

Finally we note that the results for aspect ratio and shape coefficients for cases E1
and E2 differ by a factor of approximately two, which roughly corresponds to the ratio
of the bubble Weber numbers at all volume fractions. As we have not undertaken to
extend our parametric study even further to confirm, it is concluded that the results for
(χ − 1) and a2,3 versus Weber number, in the present range of We< 7, are consistent
with a linear dependency.

We have also investigated a regime characterized by a very high Bond number (case
C, Bo = 243). The evolution of the bubbles’ ‘aspect ratio’ and shape with volume
fraction is shown in figure 10(e). The corresponding bubbles in isolation are indented
ellipsoidal caps (Bhaga & Weber 1981; Hua et al. 2008). As the volume fraction
increases, the upside-down crown of gas issuing from the bubble rim becomes thinner
and longer to form a skirt with an inward curvature (in the direction of the bubble axis
of symmetry). The range of φ values that can be considered in this case is relatively
narrow, since for φ & 6 % the bubbles become so elongated that they coalesce.

The theory of Ray & Prosperetti (2014) indicates that the finite length of the
skirt is dictated by the thinning of the skirt downstream of its point of formation.
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FIGURE 12. (Colour online) Influence of volume fraction on the deformation of an
ordered array of dimpled ellipsoidal-cap bubbles (case C): vertical component of the
relative velocity (urel = u− 〈u〉d) in a vertical symmetry plane passing through the centre
of a bubble. Increasing volume fractions from left to right: (a) φ = 0.2 %, U/U0 = 1.22,
and (b) φ = 2.4 %, U/U0 = 1.17. Same conventions as in figure 11. Only the region near
and inside a bubble is shown.

According to their model, the skirt thickness is proportional to
√−us, where us is

the (negative) vertical component of the relative velocity (that is, the liquid velocity
in the bubble’s frame of reference) at the outer side of the skirt at a given altitude
(the inward curvature of the skirt being neglected). We show in figure 12 the vertical
relative velocity urel

3 = u3 − 〈u3〉d in the vicinity of bubble (with gravity pointing in
the −e3 direction). It can be observed that as the distance from the rim increases, |us|
(|urel

3 | along the outer side of the skirt) decreases and the skirt tapers, until the skirt
ends for a critical value of |us|, in (qualitative) agreement with the model of Ray &
Prosperetti (2014). By comparing figure 12(a) with figure 12(b) one remarks that at
high volume fractions a significant downflow of liquid develops outside of bubbles’
wakes. This backflow of liquid, which is particularly strong because the bubbles rise
velocity is not substantially reduced for large values of φ, increases the value of |us|
at a given altitude. Therefore, at higher volume fraction, the skirt must extend further
downstream to reach the critical value of |us| at which the skirt ends, as observed in
our simulations.

The aspect ratio of the skirted bubble decreases towards unity as the volume fraction
is increased, even if the skirt is not included in the height. Indeed, given the moderate
value of the Reynolds number (Re≈ 10), the same reasoning as above for ellipsoidal
bubbles is expected to apply, that is, a decrease of the suction effect as the size of
the gap between side neighbours decreases. At low volume fraction, an extrapolation
of the results to zero volume fraction appears consistent with the corresponding result
for a single bubble.

4.2. Steady and unsteady oblique rise of bubbles
In the range of parameters considered thus far, the motion of a single bubble
in unbounded liquid is straight, steady and parallel to gravity. For cases E1
and S5, an oblique (i.e. not aligned with gravity) bubble motion was, however,
observed at certain volume fractions. Such oblique motions have been reported
previously for two-dimensional square arrays of bubbles (Sankaranarayanan et al.
2002; Sankaranarayanan & Sundaresan 2002; Theodoropoulos et al. 2004), but their
triggering and their stability remain essentially unexplained. We analyse oblique rise
further here. In this subsection the bubble drift velocity vector is denoted by U=Uiei
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FIGURE 13. Subset of analytical solutions obtained from solving (B 3) for Ar = 20 and
ρd/ρc = µd/µc = 0: bubble drift velocity horizontal (a) and vertical (b) components,
given as Reynolds numbers Rei = Uiρcdb/µc, as a function of volume fraction. Gravity
is pointing in the −e3 direction. · · · · · ·, vertical rise (U1 = U2 = 0); – – – –, oblique rise
with U2 = 0; ——, oblique rise with |U2| = |U1|.

and the gravity vector by g = −ge3, where ei are the unit primary vectors of the
periodic array.

First, existence of such oblique solutions is demonstrated at Reynolds numbers that
are small but finite. The Oseen analysis in appendix B yields the system of equations
(B 3) that involve the bubble velocity and the force exerted by the fluid on the bubble.
As this force is prescribed (it balances buoyancy), equation (B 3) yields the bubble
velocity. The main solution is naturally a velocity vector aligned with gravity, as
studied in § 4.1. Equation (B 3) does, however, allow for other solutions which satisfy
the nonlinear system of equations (B 12). We have found these non-trivial solutions
at values of Ar around 20. The most convenient way to obtain these solutions was
found to be, for a given inclination of the bubble velocity (with respect to the
upward vertical direction), to reduce the problem to a single nonlinear equation for
the Reynolds number based on the lattice spacing and the magnitude of the bubble
velocity (Reh in the Appendix), and to obtain the volume fraction from the remainder
of the system of equations. Two types of non-trivial solutions were studied: either the
horizontal bubble velocity component was aligned with one of the lattice unit vectors
or it was diagonal to the lattice. The results are presented in figure 13. It is seen
that these exist below a critical value of the volume fraction (which we have found
to increase rapidly with the value of Ar), the inclination angle strongly increasing
as the volume fraction is reduced. Oblique rise of single light solid particles has
already been observed in numerical simulations (Jenny, Dusek & Bouchet 2004)
and experiments (Veldhuis & Biesheuvel 2007), also arising as a non-trivial further
solution (Fabre, Tchoufag & Magnaudet 2012), but the present solutions crucially
involve bubble interactions, we investigate this further below.

We now return to numerical results. After an initial transient during which they
accelerate from rest under the effect of buoyancy, the bubbles may be deflected
from their original vertical trajectories. At this point, the horizontal components of
the bubble velocity grow in magnitude while the rise velocity drops off. After that,
velocity fluctuations set in. Three types of dynamic behaviours have been identified
depending on the evolution of these fluctuations: (i) the fluctuations may rapidly
dampen out, and the bubbles finally rise steadily on a straight (but skewed to gravity)
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FIGURE 14. Time signals of the bubble drift velocity components (given as Reynolds
numbers Rei= ρcUidb/µc), with U=Uiei and gravity pointing in the −e3 direction, in the
three regimes of motion: steady oblique rise (a,b), oscillatory oblique rise (c) and chaotic
oblique rise (d). These regimes are obtained for (a) case E1 at φ= 0.8 %, (b) case S5 at
φ = 13 %, (c) case S5 at φ = 3.8 %, (d) case S5 at φ = 0.5 %.

path; (ii) they may take the form of oscillations, so that the bubbles’ motion is
oscillatory around a straight oblique path; or (iii) they may become aperiodic, so the
bubble rise is chaotic and, on average, not aligned with gravity. These regimes are
exemplified in figure 14, and will be respectively referred to as steady oblique rise
(a,b), oscillatory oblique rise (c) and chaotic oblique rise (d).

The bubble drift velocities are in all cases either steady or statistically stationary,
so mean drift velocities can be defined by averaging over a sufficient time period.
The horizontal and vertical components of the (statistically) steady drift velocity are
plotted against volume fraction in figure 15 for cases E1 and S5. Filled symbols
are used for steady bubble motion, vertical or oblique. For unsteady bubble motion,
the time-averaged drift velocity is shown with open symbols, and the standard
deviation is represented using vertical bars. In case E1 (figure 15a), steady vertical
rise is obtained at low and high volume fractions, whereas at intermediate volume
fractions the bubbles rise steadily along an oblique path with an inclination angle
of approximately 3◦. This figure shows that three solutions exist in this regime: a
symmetric vertical solution (U1 = U2 = 0) and two asymmetric oblique solutions
consisting of horizontal velocity components of equal magnitude (|U1| = |U2| 6= 0), as
predicted from the Oseen flow analysis (figure 13). In case S5 (figure 15b), steady
vertical rise, steady oblique rise, oscillatory oblique rise and chaotic oblique rise are
obtained in that order as volume fraction is decreased. Inclination of the velocity
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FIGURE 15. Quasi-steady drift velocity components (U = Uiei) in the form of Reynolds
numbers (Rei = ρcUidb/µc) as a function of volume fraction for an ordered array of
bubbles in the cases where bubbles exhibit non-vertical motions. Gravity is pointing in
the −e3 direction. (a) Case E1 (Bo= 2.0, Ar= 29.9, note that the horizontal components
have been multiplied by 10 for clarity). (b) Case S5 (Bo=0.38, Ar=40.7). Filled symbols
are used when the bubbles’ motion is steady (oblique or vertical). Open symbols and
vertical bars are used when the bubbles’ motion is unsteady: symbols indicate the mean
drift velocity, and bars show its root mean square. The dashed line is a numerical fit of
the form of (4.8) matching DNS and isolated-bubble data for the vertical rise only.

with respect to the upward vertical direction is between 6◦ and 13◦ (maximum for
φ1/3 = 0.4). As volume fraction approaches zero, the steady vertical rise of the
isolated bubble must be recovered, although the occurrence of this transition cannot
be evidenced by numerical simulations owing to their prohibitive cost.

It is possible to obtain insight into this behaviour by using prior results for
bubble pairs. At steady state, the integral of fluid stresses over the bubble surface,
denoted by f , is balanced by the buoyancy force f buoy: f = −f buoy, with f buoy =
fbuoye3 = (π/6)d3

b(ρc − ρd)ge3. The total surface force f acting on the bubble can be
decomposed into a drag force f drag and a lift force f lift, defined by

f drag = (f ·U)
U
|U|2 , f lift = f − f drag, (4.10a,b)

and corresponding to longitudinal and transverse components of f with respect to
the direction of motion, respectively (these definitions can be used for unsteady
but statistically stationary systems by replacing U and f by their time averages).
The persistence of a (possibly average) oblique motion implies the existence of a
net (average) lift force exerted on the bubble. The magnitude of this lift force is
classically presented in the form of a dimensionless lift coefficient CL defined by

CL =
|f lift|

0.125πd2
bρc|U|2 . (4.11)

The (average) lift coefficient is plotted as a function of volume fraction in figure 16
for case E1 (open grey triangles) and case S5 (open black squares).

Since the tilt angle remains small (not larger than 13◦ in our simulations), each
bubble is in the wake of its predecessor, and the oblique path is expected to originate
from the vorticity produced by the preceding bubble. We therefore investigate whether
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FIGURE 16. Average lift coefficient as a function of volume fraction for case E1 (grey
triangles) and case S5 (black squares). Open symbols: for a bubble of an ordered array,
present DNS. Filled symbols: for the trailing bubble of a pair of spherical bubbles
within the same conditions (orientation, Reynolds number, separation distance) as two
vertically aligned bubbles of the ordered array, with (large symbols) and without (small
symbols) accounting for the interaction with the wake of the leading bubble, from Hallez
& Legendre (2011).

the lift force induced by the preceding bubble can be estimated from prior work on
bubble pairs separated by a fixed distance equal to the present lattice spacing, both
rising at a constant velocity U and where the angle between U and the vertical
line joining their centres is the inclination angle measured from our simulations. The
model proposed by Hallez & Legendre (2011) for bubble pairs ((6.12) therein) is used
here for this purpose. A spherical bubble shape appears a reasonable approximation
given that in our simulations the aspect ratio does not exceed 1.3 for case E1, and
1.1 for case S5. The results are shown in figure 16 with larger filled symbols. To
assess the influence of the leading bubble’s wake, the lift coefficient obtained for
bubble pairs without the contribution from the wake is shown on the same figure
with smaller filled symbols. The trend obtained by considering the pair interaction
is in excellent adequacy with our numerical results for periodic arrays when the
wake of the top bubble is accounted for, thereby demonstrating that oblique rise is
essentially a wake-induced effect. The lift coefficient in ordered suspensions is found
to be larger than that due to the interaction with the wake of a single bubble, and
the difference is more pronounced at higher volume fractions, since in the periodic
configuration the bubble has an infinite number of top neighbours that may contribute
to the lift force.

This reasoning can even be made more precise by considering the expression of
the lift force acting on a single spherical bubble moving in a (e.g. wake-induced)
rotational flow (Auton 1987; Legendre & Magnaudet 1998; Hallez & Legendre 2011):

f lift ∝ d3
bρcΩ ×U. (4.12)

In this expression, Ω =|Ω|eh is the liquid vorticity ‘seen’ by the bubble and produced
by the motion of all the other bubbles. No clear definition of this quantity is available
if vorticity is not uniform at the bubble scale, as is the case in the present study, but it
is reasonable to assume that it can be qualitatively estimated by examining vorticity
profiles in the bubble vicinity. In turbulent flows, Merle, Legendre & Magnaudet
(2005) and Naso & Prosperetti (2010) approximated the velocity and vorticity ‘seen’
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FIGURE 17. (Colour online) Liquid vorticity horizontal component ωh = ω · eh in the
vertical plane passing through the centre of a bubble and containing its drift velocity, for
ordered arrays of bubbles rising steadily in an oblique direction: (a) case E1, φ = 0.8 %;
(b) case S5, φ = 6.5 %. Positive (negative) values upstream of the bubble would give a
positive (negative) contribution to the lift force as modelled by (4.12). The thin black
arrow shows the direction of bubble drift velocity. The thick arrows show the magnitudes
and directions of the drag (green arrows) and lift (orange arrows) forces scaled by the
buoyancy force.

by bubbles and solid particles respectively, by the average of these quantities over
shells of different sizes. In order to show that our results are qualitatively consistent
with (4.12), it is thus convenient to introduce an orthonormal direct basis (e‖, e⊥, eh),
defined by the unit vectors

e‖ = U
|U| , e⊥ =

f lift

|f lift|
, eh = e‖ × e⊥. (4.13a−c)

The bubble’s steady motion is contained in the vertical plane defined by (e‖, e⊥). We
now examine the sign and magnitude of the liquid vorticity component ωh = ω · eh
ahead of the bubble, where it should overall give a positive contribution to |Ω| for the
above model to be correct. We show in figure 17 the liquid vorticity field projected
onto eh in the vertical plane normal to eh for two examples of steady oblique rise.
The bubble in figure 17(b) experiences a stronger lift force (indicated by the thick
orange arrow) than the bubble in figure 17(a). This is consistent with (4.12) and the
fact that, upstream of the bubble (its drift velocity being shown with the black arrow),
ωh is positive and its magnitude is larger than that in figure 17(a) (although only two
examples are shown here the same result holds for all our simulations). In addition it
is seen from figure 17 that ωh is transported from the surface of preceding bubbles,
hence confirming the key role played by the wakes and the associated lift force for
the stability of oblique motion.

We will now examine the time dependence of bubble motions in the unsteady
regimes. As illustrated in figure 18, which depicts the single-sided amplitude spectra
of the discrete Fourier transforms of the drift velocity components time signals in
the oscillatory (a) and chaotic (b) rise regimes, a spectral analysis of the unsteady
velocity signals reveals clear peaks at a frequency equal to fh = (U1 + U2)/(2h)
(where the bar denotes a time average). Normalizing frequencies by f3 ≡ U3/h (not
shown here) does not lead to a collapse of the curves. This suggests that the force
fluctuations experienced by a bubble are also driven by the interaction with the wakes
of the preceding bubbles that are not on the same vertical axis. As a consequence,
the dynamic behaviour of a bubble in an ordered array, although greatly influenced by
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FIGURE 18. Single-sided amplitude spectra of discrete Fourier transforms of the drift
velocity components time signals. Unsteady oblique rise of ordered arrays of bubbles: (a)
oscillatory motion (case S5 at φ= 3.8 %), (b) chaotic motion (case S5 at φ= 1.6 %). The
amplitude is normalized by the average vertical drift velocity U3, and the frequency is
normalized by fh = (U1 +U2)/(2h).

the direct interaction with its top neighbour, is also dictated by longer-range nonlinear
interactions with other bubbles located in above horizontal planes.

In the light of these results, we are now in a position to propose the following
scenario for explaining the transitions between the various regimes of motion reported
in figure 15. First, non-vertical motion can only occur when the flow conditions
allow sufficiently high Reynolds numbers to be attained (here, cases E1 and S5).
Vorticity then becomes significant in the vicinity of each bubble due to the wake
of its predecessor; an infinitesimal asymmetry can then result in a lift force that is
sufficient to result in oblique motion (Koch 1993). If each bubble is only influenced
by the wake of its immediate predecessor, this motion is steady. When the wakes
extend horizontally over distances large compared to the lattice spacing, each bubble
interacts with the wakes of a great number of neighbours, including some that are not
located on the same vertical axis, and the motion becomes chaotic. Then, for a given
flow regime, the volume fraction is in the first place related to the distance between
the bubbles, but also affects the Reynolds number in a non-monotonic manner. At
low volume fraction, when the Reynolds number increases with volume fraction,
steady vertical rise, steady oblique rise and unsteady oblique rise occur in that order
at increasing volume fraction. At higher volume fraction, the situation becomes more
complex because the Reynolds number decreases with φ. It appears that the dominant
effect of increasing volume fraction is then not to bring the bubbles closer to each
other, but to reduce their velocity, so that steady oblique rise is first recovered, and
is replaced by steady vertical rise at the highest volume fractions.

5. Free arrays
We examine in this section the behaviour of freely evolving bubbly flows as

represented by the repetition of a unit cell containing several independent bubbles
(‘free arrays’). This problem, studied previously by several groups (e.g. Bunner &
Tryggvason 2002a; Esmaeeli & Tryggvason 2005; Yin & Koch 2008) but only at
moderate and high volume fractions, is revisited here following the insights gained
in the previous section for ordered arrays. Our main objective in this section is to
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investigate the dynamics of free arrays at small and intermediate volume fractions,
and to compare the observed trends with those obtained for ordered suspensions.

Simulations of free arrays of bubbles have been undertaken for cases E1 and C
(table 1). The two fluids were initially at rest, Nb identical spherical bubbles were
introduced in a cubic periodic unit cell of size h (which results in a gas volume
fraction φ = (πNbd3

b)/(6h3)) and gravity was switched on at time zero. It was found
that the transient evolution of the system can follow either of two routes: one with
successive pair coalescence events until an ordered array configuration is recovered,
and the other one in which the number of bubbles remains constant throughout
the simulation. The former was observed for case C, which corresponds to highly
deformable bubbles of dimpled or skirted ellipsoidal-cap shapes, even at relatively low
volume fractions (the lowest volume fraction considered in that case was φ = 0.8 %).
In case E1 (weakly ellipsoidal bubbles), by contrast, coalescence was never observed,
provided that the bubbles’ interfaces are initially sufficiently separated from each other
and that the volume fraction remains below approximately 5 % (we shall elaborate on
this last point in § 5.2). Examination of the suspension evolution revealed that bubbles
never come into close contact in that case, as previously observed by Esmaeeli &
Tryggvason (1999) in a similar flow regime. After a transient regime, the flow was
found to become independent of the initial bubbles’ positions and a well-defined
statistically steady state was reached.

In the following we analyse the statistically stationary rise of free, non-coalescing,
deformable bubbles at moderate Reynolds number (case E1). Approximately 50
simulations of free arrays were run in total, corresponding to different initial
conditions, numbers of bubbles and volume fractions. For each of these, the transient
evolution of the system was monitored through the time signals of the bubble drift
velocity U (defined, as for ordered arrays, by (2.3), and therefore equal to the
average drift velocity of the Nb bubbles) and of the interface surface area A (which
is a measure of the average deformation of the Nb bubbles). In all simulations, the
instantaneous horizontal components of U were found to be negligibly small, so we
shall hereinafter simply use U to denote the vertical component of the drift velocity
vector. Each simulation was continued until U and A became statistically stationary.
Their time averages, denoted by overbars in what follows, were then computed by
averaging over a sufficient time interval.

5.1. Convergence with the number of bubbles
The influence of the number of free bubbles in the unit cell is evaluated by varying
Nb from 2 to 27 while keeping the volume fraction (and all other parameters) constant.
The evolution of the bubbles’ drift velocity with the number of bubbles is shown
in figure 19 for φ = 2.4 % (filled circles). The main effect of additional degrees
of freedom is to slow down the bubbles: the drift velocity drops by 15 % when
the relative motion between two bubbles is allowed, and is reduced further (up to
≈30 %) if the number of bubbles in the unit cell is increased. For Nb > O(10), the
drift velocity becomes nearly independent of the number of bubbles. The rate of
convergence and the maximal relative decrease in drift velocity with the number of
bubbles appear to be essentially independent of the volume fraction, at least in the
limited range considered here, as shown in figure 19 (open triangles and squares).
The drift velocities obtained by Bunner & Tryggvason (2002a) for a similar flow
regime have been reported in the same figure (crosses). It is worth mentioning that
although the maximum number of bubbles shown in figure 19 is Nb = 27, Bunner
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FIGURE 19. Influence of the number of bubble on the average bubble drift velocity for
various volume fractions. The drift velocity is normalized by that obtained in the ordered
configuration (Nb = 1). Symbols other than crosses: present DNS for case E1 (Ar= 29.9,
Bo = 2.0). Crosses: prior DNS of Bunner & Tryggvason (2002a) for a comparable flow
regime (Ar= 29.7, Bo= 0.98).
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FIGURE 20. Influence of the number of free bubbles on their spatial distribution within a
periodic unit cell: typical instantaneous snapshots for Nb = 4 (a) and Nb = 8 (b), for case
E1 at φ = 3.8 %.

& Tryggvason (2002a) have performed simulations for 1 6 Nb 6 216 (see figure 8a
in their paper), and also concluded that the effect of the system size on the drift
velocity becomes negligible for Nb >O(10) in this flow regime. Overall the agreement
between the two data sets is excellent, including in the peculiar case Nb = 4.

It can indeed be noticed in figure 19 that convergence is not monotonic and that
the rise is abnormally slow for Nb = 4. Visual inspection of the spatial distribution
of the bubbles reveals a significant preference for horizontal alignment in that case.
This bias is particularly pronounced for values of φ that are not very small and is
therefore illustrated in figure 20 for φ= 3.8 %: while the bubbles are rather uniformly
distributed within the periodic cell for Nb = 8 (b), as is the case for other typical
values of Nb, they all remain in the same horizontal plane when Nb = 4 (a), so that
in the latter case the suspension actually consists of successive horizontal layers of
bubbles. As shown by Hallez & Legendre (2011), side-by-side alignment maximizes
the drag force acting on a pair of bubbles, resulting in lower drift velocities than with
other types of spatial distributions.

This particular behaviour for Nb = 4 demonstrates that an ordered microstructure is
not always unstable. Such arrangements in horizontal planes are indeed possible if the
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number of free bubbles possesses an integer square root, due to periodicity and system
symmetries. For Nb = 9, the bubbles also tend to arrange within a single horizontal
plane, but this arrangement rapidly breaks up and is only observed intermittently. This
results in the small but noticeable anomalous reduction of the drift velocity visible for
Nb= 9 in figure 19. For Nb= 16, no horizontal layer of bubbles is formed during the
simulation and no anomaly is detectable in figure 19. We conclude that the artificial
effects of symmetry and periodicity observed when Nb is an exact square rapidly
vanish as the number Nb of independent bubbles is increased.

5.2. The effect of volume fraction on bubble drift velocity and deformation
The volume fraction has been varied from 0.2 % to 3.8 % by reducing the size of
the unit cell while keeping all the other parameters constant, for a number of freely
moving bubbles set to Nb = 8. For volume fractions greater than 5 %, numerical
coalescence (that is, coalescence due to the spacing between bubble interfaces being
less than the grid spacing) occurs during the transient evolution of the flow, therefore
no data could be obtained for high volume fractions.

Data for fairly high volume fractions are however available from prior studies of
Bunner & Tryggvason (2002a) and Bunner & Tryggvason (2003) who performed
simulations of free arrays of bubbles using a front-tracking method that does not
allow coalescence. In their simulations, the Archimedes numbers are similar to ours
(Ar ≈ 30) but the Bond numbers (and hence the bubble shapes) are different: the
bubbles are nearly spherical (Bo= 0.98) in Bunner & Tryggvason (2002a), they are
oblate ellipsoids (Bo= 5.0) in Bunner & Tryggvason (2003), our present simulations
are for Bo= 2.0. In order to present their results together with ours, we first estimate
the terminal velocity of the corresponding isolated bubbles. We proceed for that
purpose in the same manner as we did for our own simulations, that is by using the
correlation of Loth (2008) for single ellipsoidal bubbles, which leads to Re0 = 33 for
Bo= 0.98 and Re0 = 26 for Bo= 5.0.

The influence of volume fraction on the drift velocity normalized by the terminal
velocity of the same bubble in unbounded liquid is shown in figure 21. Squares and
triangles correspond to prior simulations of nearly spherical and oblate ellipsoidal
bubbles, respectively. Filled circles correspond to our present simulations of weakly
ellipsoidal bubbles. For comparison, the results we obtained for the corresponding
ordered arrays are shown in the same figure with open circles. Remarkably, the
evolution of the drift velocity with φ seems to be different in dilute and fairly
dense suspensions of free bubbles, as is the case when bubbles are perfectly ordered.
We have checked that neither a linear evolution with φ nor a law of the form
U/U0 = k(1 − φ)n (with k and n free parameters) is compatible with the data
presented in figure 21.

At moderate to fairly high volume fractions (say, 0.015 6 φ 6 0.25, that is, 0.25 6
φ1/3 6 0.63), the drift velocity of free bubbles decreases approximately linearly in φ1/3.
This scaling, which is also independent of the bubble oblateness (in the limit of the
range of shapes considered here), agrees with that obtained for ordered suspensions
in the same conditions.

The drift velocity dependence on volume fraction is radically different at vanishing
φ: although we cannot approach the dilute limit in the simulations, it is clear that a
simple extrapolation to φ = 0 from results at larger φ is not feasible. In the absence
of inertial effects and in this dilute limit, a linear reduction of the drift velocity with
φ would be expected, according to the analytical solution from Keh & Tseng (1992),
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FIGURE 21. Influence of volume fraction on the bubbles’ drift velocity in ordered and
freely evolving suspensions, with comparable Ar (≈ 30) and various Bo. The drift velocity
is normalized by the terminal velocity of an isolated bubble for the same Archimedes and
Bond numbers (estimated from Loth (2008)).E and – – – –, present DNS data, and their
numerical fit, for Nb = 1 (ordered arrays) and Bo= 2.0; u, present DNS for free arrays
of eight bubbles with Bo= 2.0;p, prior DNS of Bunner & Tryggvason (2002a) for free
arrays of 27 bubbles with Bo= 0.98;q, prior DNS of Bunner & Tryggvason (2003) for
free arrays of 27 bubbles with Bo= 4.9.

derived for random bubbly suspensions in the Stokes flow regime. At finite Reynolds
numbers, however, inertial effects are expected to dominate far from the bubbles.
The results for free arrays at low φ in figure 21 suggest strongly that bubbles in
dilute suspensions rise faster than their isolated counterparts, as in ordered arrays,
due to cooperative wake interactions. Such interactions would be much weaker than
in ordered suspensions due to the less likely occurrence of vertical alignments (since
a spherical or slightly oblate bubble lying in the wake of one of its neighbour
experiences a transverse lift force directed away from the wake so that two weakly
ellipsoidal bubbles cannot remain in line), but they might still play a role in the
suspension dynamics. The uncertainty of the terminal velocity of isolated bubbles
prevents us from drawing definitive conclusions on this point, as that would require
simulations at even lower volume fractions, beyond the reach of the computational
capabilities at our disposal.

The effect of volume fraction on bubble deformation is now evaluated, both
qualitatively from visualizations of the flow, and quantitatively through the measurement
of their interfacial surface area, larger surface areas being associated with a stronger
departure from the spherical shape. We show in figure 22 the volume fraction
dependence of the bubbles’ sphericity, defined as the ratio between the total surface
areas of a set of Nb volume-equivalent spheres and that of the bubbles. The trends
obtained for ordered and free arrays are qualitatively similar; ellipsoidal bubbles
becoming more spherical as volume fraction increases. A plausible explanation of the
larger oblateness (smaller sphericity) of freely moving bubbles is the weaker role of
wake-induced nose elongation due to the less likely occurrence of vertically aligned
pairs, as explained above.

An explanation of the observed similarities between freely evolving suspensions and
ordered arrays at small to intermediate volume fractions may be sought in the fact that
in the former, the bubbles’ spatial distribution is non-random and possesses a certain
degree of order. The presence of order in suspensions is classically evaluated using
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FIGURE 22. Influence of volume fraction on the bubbles’ sphericity in ordered (open
circles) and free (filled circles) arrays for case E1. The sphericity is defined as the ratio
between the total surface areas of a set of Nb volume-equivalent spheres and that of the
bubbles.

the structure factor or pair distribution function. Due to the level-set method, tracking
individual bubbles is not automatically done and would require a significant further
coding effort. For this reason the microstructure has not been evaluated quantitatively
in our simulations. Nevertheless flow visualizations have been used for a qualitative
evaluation of the bubble spatial distribution.

Visualizations of bubble motion reveal that free bubbles rise at comparable velocities
with very weak horizontal displacements and never get close to each other for the
entire range of volume fractions we considered. This may be seen in supplementary
movies 1 and 2 available at https://doi.org/10.1017/jfm.2017.64, which show top views
of the unsteady bubble motion at the maximum (φ=3.8 %) and minimum (φ=0.24 %)
considered volume fractions, respectively. Their spatial distribution within the cell is
fairly uniform, and their relative positions remain more or less constant as they rise, in
agreement with prior observations by Esmaeeli & Tryggvason (1999), who also found
for similar flow conditions that bubble dispersion in the horizontal direction is almost
absent.

These observations are consistent with prior quantitative evaluations of the
microstructure of dilute and moderately concentrated suspensions of (nearly) spherical
bubbles at Re = O(10). On the experimental side, Cartellier & Rivière (2001)
evidenced that in the range 10−4 < φ < 10−2, a test bubble experiences a deficit
of neighbours in its immediate vicinity and an excess of neighbours at the border of
the deficit zone, or in other words, that a certain degree of order is present in the
suspension. The magnitude and extent of the deficit zone decrease with increasing
φ, but a clear non-random microstructure has been shown by Cartellier, Andreotti
& Sechet (2009) to persist at least up to φ = 0.08. On the numerical side, Bunner
& Tryggvason (2002a) and Yin & Koch (2008) identified analogous deficits of
bubbles at short distances and excesses of bubbles farther away from a test bubble
for 0.02 6 φ 6 0.12 and φ = 0.05 in their respective simulations.

Although bubbles are free to sample the entire liquid, they stay with the same
neighbours for long times, which explains why suspensions of free bubbles share some
properties with perfectly ordered ones, at least up to moderately high volume fraction
and at moderate Reynolds number.

A related point, beyond the scope of the present study, is the properties of the
bubble-induced liquid agitation. Information about this can be found in Loisy (2016).
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FIGURE 23. Influence of volume fraction on the normalized drift velocity of freely
rising bubbles: comparison between simulations and experiments.u, present DNS (Nb= 8,
Ar= 29.9, Bo= 2.0, Re0 = 31); ×, experiments of Martinez-Mercado et al. (2007) (Ar=
26.3± 1.6, Bo= 0.25± 0.02, Re0 = 29.7± 3.1). The terminal velocities U0 in unbounded
liquid have been estimated from the correlation of Loth (2008) for numerical simulations
(ellipsoidal bubbles) and from the correlation of Mei et al. (1994) for experiments
(spherical bubbles).

5.3. Comparison with experiments
Finally, we investigate the relation of our results and prior experimental data. A direct
comparison between direct numerical simulations and experiments is often impossible
because the typical flow conditions differ strongly between these two approaches
(moderate versus high Reynolds numbers, nearly spherical versus wobbling bubbles,
absence versus presence of surfactants, monodispersity versus polydispersity, constant
versus varying bubble diameter at varying φ, etc.). To the best of our knowledge,
the only experiments carried out under conditions comparable to those in the present
work are those of Martinez-Mercado et al. (2007), who measured the average velocity
of nearly monodisperse air bubbles rising in a mixture of water and glycerine (50 %
mass fraction), for volume fractions ranging from 0.4 % to 6.5 %. Importantly, they
found the bubble equivalent diameter to be almost independent of the gas volume
fraction, so that comparison with our numerical data is relevant. According to the
physical properties of the fluids and bubble equivalent diameter (db= 1.20± 0.05 mm)
reported in their paper, their experimental conditions correspond to Ar = 26.3 ± 1.6
and Bo = 0.25 ± 0.02. In this regime, bubbles are nearly spherical (as confirmed by
the photographs in their paper), so the terminal Reynolds number of the equivalent
isolated bubble can be estimated from the correlation of Mei et al. (1994) (as we
did for our simulations of spherical bubbles), which yields Re0 = 29.7 ± 3.1. These
experimental conditions are therefore comparable to our case E1 (Ar= 29.9, Bo= 2.0,
Re0 = 31) in terms of Archimedes and Reynolds numbers, but not in terms of Bond
numbers.

The evolution of the bubble drift velocity with volume fraction is shown in
figure 23, wherein experimental measurements are represented by crosses and the
present numerical results by circles. Numerical and experimental trends are very
similar, both exhibiting two different scaling laws at moderate and low volume
fractions. In particular, experimental data are compatible, like the numerical ones, with
a linear dependence of the rise velocity on φ1/3 in the case of moderately concentrated
suspensions. This behaviour suggests that ordered arrays are able to capture some
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FIGURE 24. (Colour online) Prior experimental data for air bubbles rising in water: U
(average drift velocity in metres per second) replotted versus φ1/3 (with φ the gas volume
fraction). In the legend, db0 is the experimentally determined bubble diameter at zero
volume fraction.

properties of real bubbly suspensions. Besides, we note that experimental velocities
are systematically lower than those predicted from our simulations. Although perfect
agreement is not expected due to the differences in the flow conditions, as discussed
below, we speculate this may also be partly due to our work being on perfectly
homogeneous suspensions, whereas experiments may be affected by the presence of
walls and of weak gradients.

The main difference between our simulations and the above-mentioned experiments
is the value of the Bond number which directly alters the bubble shape (ellipsoidal in
the former, nearly spherical in the latter). It follows that a quantitative comparison of
bubble shapes between our numerical results and experimental measurements is not
possible. It is however worth mentioning that, in their experiment at high Reynolds
number (Re ≈ 400), Zenit et al. (2001) found the aspect ratio of ellipsoidal bubbles
to decrease with increasing volume fraction (from χ = 1.5 at φ ≈ 0 to χ = 1.2 at
φ ≈ 0.05). This trend is qualitatively similar to our numerical results presented in
figure 10 for an ordered array of ellipsoidal bubbles with comparable aspect ratios,
and more generally, is qualitatively similar to what we observe in our simulations of
both ordered and free arrays of ellipsoidal bubbles.

To further support the idea that ordered arrays may be relevant to bubbly flows of
practical interest, experimental data obtained by Garnier et al. (2002), Riboux et al.
(2010) and Colombet et al. (2015) for the air–water system at high Reynolds number
(Re� 100) are presented in figure 24 in the form U versus φ1/3. Figure 24 bears a
striking resemblance to figure 23: at moderate to fairly high volume fractions (say
0.2 6 φ1/3 6 0.5, that is, 0.008 6 φ 6 0.13) the bubble velocity decreases linearly
with φ1/3 whereas in the dilute limit a different scaling law seems to hold. We have
checked that neither a linear evolution with φ nor a law of the form U ∝ (1 − φ)n
(with n a constant, possibly different for each data set) is compatible with the data
presented in figure 24. It is also worth mentioning that some of these data sets are
consistent with the notion that, in dilute bubbly suspensions, the bubble drift velocity
may be higher than that of a single bubble (although again definitive conclusions can
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hardly be drawn on this point owing to experimental uncertainty on the values of the
isolated-bubble velocity).

Overall our numerical results, as well as prior experimental data, suggest that some
properties of bubbly flows are sensitive to the presence of order, and that modelling
a bubbly suspension by a cubic lattice of bubbles to investigate such properties is not
irrelevant, except perhaps at very high volume fractions, and as long as clusters are
not formed.

6. Conclusions

The effect of volume fraction φ on the rise velocity and deformation of bubbles
was first investigated when these are arranged in a cubic array. A non-monotonic
behaviour of the rise velocity U at increasing volume fraction was obtained in the
whole range of parameters considered from the DNS; this was supported by an
analysis in the limit of weakly inertial suspensions of spherical bubbles. For low
values of φ, ‘cooperative’ wake interactions dominate and lead to an increase of U
at increasing volume fraction, whereas the opposite behaviour occurs in the limit
of large φ because of the predominance of ‘hindering’ viscous interactions. These
findings were supported further by comparison with the drag on a bubble behind
another bubble when no other bubbles are present. A semi-empirical law for the
volume fraction dependence of the rise velocity, consistent with our numerical results
even in the case of highly deformed bubbles, was also proposed. The investigation of
bubble shapes showed that ellipsoidal and skirted bubbles tend to become spherical at
increasing volume fraction, and that the fore-and-aft asymmetry of isolated ellipsoidal
bubbles is reversed for non-vanishing values of φ. An oblique motion of the bubbles
was observed for certain parameter values, and supported by the above-mentioned
analysis. In this regime, the lift coefficient can be approximated by that of bubble
pairs that are aligned vertically. The behaviour in this regime can be steady, oscillatory
or chaotic, the latter arising if the horizontal extension of the bubbles’ wakes is large
enough to allow interaction of bubbles with the wakes of neighbours which are not
vertically aligned with them. A scenario explaining the transitions between these three
regimes has been proposed.

The free rise of weakly deformed bubbles at moderate Reynolds number was then
investigated for small and intermediate volume fractions. Simulations of free arrays of
bubbles revealed that these share some common properties with ordered ones. Most
notably, the drift velocity of free bubbles decreases linearly in φ1/3 at moderately
high φ whereas a different scaling law holds in the limit of low φ, as in ordered
suspensions. This change of behaviour is compatible with available experimental data,
and is believed to be responsible for the confusion in the literature regarding the
form of empirical correlations in the context of corresponding asymptotic expressions.
In addition, deformable bubbles were observed to become spherical as the volume
fraction is increased, as in ordered arrays. We attribute the similarities between ordered
and freely evolving suspensions to the fact that free bubbles were observed to keep
the same neighbours for a long time, in agreement with prior work indicating that a
certain degree of order is present in bubbly flows at comparable Reynolds number and
volume fractions.

The present work is restricted to bubbles rising at a Reynolds number that
is not more than 40. Beyond this, the dynamics of bubbly suspensions will be
enrichened by the possibility of a single bubble already exhibiting path instability
(e.g. Ern et al. 2012). Such a study would require substantially larger computational
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resources, as comparatively thin boundary layers must be resolved. In addition, the
present conclusions apply to perfectly homogeneous systems, perfectly monodisperse
suspensions and perfectly clean bubbles. Weak shear, polydispersity and interface
contamination may all have significant effects in real bubbly flows. The work
presented herein forms the basis of an investigation of passive scalar transport in
bubbly flows and of turbulent bubbly flows.
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Appendix A. Discretization schemes and additional validation tests
Details on the numerical methods used in our study, together with the results of

some benchmark and sensitivity tests of our code, are provided hereinafter.

A.1. Algorithm and discretization schemes
Spatial discretization relies on a finite-difference/finite-volume approach on a fixed,
staggered, Cartesian grid. Scalar variables (level-set, pressure) are located at cell
centres, which discrete coordinates are denoted with subscripts (i, j, k), and the three
components of velocity are stored on cell-face centres (i + 1/2, j, k), (i, j + 1/2, k)
and (i, j, k + 1/2), which allows a stronger coupling between velocity and pressure
than with co-collocated grids.

The governing equations are integrated in a coupled manner using a time-staggered
discretization: the velocity components are computed at integer time steps while the
pressure and the level-set function are computed at half-integer time steps. In what
follows, 1t is the time step and the superscripts n and ∗ are used to denote the current
time iteration and some intermediate iteration, respectively. After initial conditions
have been defined for the level-set, velocity and pressure fields, the time integration
algorithm proceeds iteratively through the following steps.

At the beginning of time step tn, ψn−1/2, un, un−1 and un−2 are known.

Step 1: Advection of the level-set function.
ψ is advanced from ψn−1/2 to ψn+1/2 according to (3.6) using the three-stage third-

order TVD Runge–Kutta scheme (Gottlieb & Shu 1998):

ψ∗ =ψn−1/2 +1t[−L (un, ψn−1/2)+A (un, ψn−1/2) ψn−1/2], (A 1)
ψ∗∗ = 3

4ψ
n−1/2 + 1

4ψ
∗ + 1

41t[−L (un, ψ∗)+A (un, ψ∗) ψ∗], (A 2)

ψn+1/2 = 1
3ψ

n−1/2 + 2
3ψ
∗∗ + 2

31t[−L (un, ψ∗∗)+A (un, ψ∗∗) ψ∗∗], (A 3)

where L (u, ψ) and A (u, ψ) are finite-difference approximations of the advection
term u · ∇ψ and of the source term A(u, ψ), respectively. In L (u, ψ), u is
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interpolated at the cell centre with a second-order scheme and ∇ψ is computed
using a fifth-order WENO scheme (Jiang & Shu 1996), as recommended by Salih &
Ghosh Moulic (2009). In A (u, ψ), ∇iψ is calculated through a fourth-order centred
scheme and ∇iuj through a second-order centred scheme.

Step 2: Reinitialization of the level-set function.
As already mentioned in § 3, the iterative approach introduced by Sussman et al.

(1994) is used to reinitialize ψ . This consists in solving for an artificial time τ

∂d
∂τ
= sgn(ψ)(1− |∇d|), with d(x, τ = 0)=ψ(x), (A 4)

where sgn is the sign function. An interesting feature of (A 4) is that the reinitialization
of the level-set function starts near the interface and propagates outward: when this
equation is solved up to pseudo-time T , d(x, τ = T) is the signed distance function
for all the points within distance T from the interface. Since it is important for ψ to
be a signed distance function only inside the interfacial region of thickness 2ε, the
reinitialization is not carried out to steady state but only up to a given pseudo-time
which must be at least equal to ε. Our algorithm is based on the second-order TVD
Runge–Kutta scheme (Gottlieb & Shu 1998) for the time integration of (A 4), which
is carried out until τ =M1τ , where 1τ is the artificial time step and M is a fixed
number of iterations.

(i) Initially:
d0 =ψn+1/2. (A 5)

(ii) Then for m= 0 to m=M:

d∗ = dm +1τR(dm), (A 6)
dm+1 = 1

2 dm + 1
2 d∗ + 1

21τR(d
∗). (A 7)

(iii) Finally:
ψn+1/2 = dM. (A 8)

In practice we use the standard value 1τ = 0.51x, and set M = 5. In the above
algorithm, R(d) represents the discretization of the spatial term sgn(ψ)(1 − |∇d|)
devised by Russo & Smereka (2000), which reads in three dimensions

R(d)=
−

1
1x
(sgn(d0

i,j,k)|di,j,k| −Di,j,k) if (i, j, k) ∈Σ1x,

−sgn(d0
i,j,k)G(di,j,k) otherwise.

(A 9)

Σ1x is the set of points located within one grid point from the zero-level of d0, where
Di,j,k is computed by

Di,j,k =1x
d0

i,j,k

1d0
i,j,k
, (A 10)
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with

1d0
i,j,k = max

{
1x, 0.5

√
(d0

i+1,j,k − d0
i−1,j,k)

2 + (d0
i,j+1,k − d0

i,j−1,k)
2 + (d0

i,j,k+1 − d0
i,j,k−1)

2,

|d0
i+1,j,k − d0

i,j,k|, |d0
i,j,k − d0

i−1,j,k|, |d0
i,j+1,k − d0

i,j,k|,
|d0

i,j,k − d0
i,j−1,k|, |d0

i,j,k+1 − d0
i,j,k|, |d0

i,j,k − d0
i,j,k−1|

}
, (A 11)

and G(di,j,k) is an upwind discretization of |∇d| − 1 computed with a finite-difference
second-order essentially nonoscillatory scheme (Harten et al. 1987).

Step 3: Correction of the level-set function.
To enforce volume conservation, the iso-contours of ψn+1/2 are shifted. ψn+1/2 is

then replaced by

ψn+1/2 +1ψ, with 1ψ = Vn+1/2
d − V0

d

2Sn+1/2
i

, (A 12)

where Vd is the volume of the disperse phase calculated from (Ω is the computational
domain):

Vd =
∫
Ω

(1−Hε(ψ)) dx, (A 13)

and Si is the surface area of the interfaces between the two phases, obtained from:

Si =
∫
Ω

δε(ψ) dx, (A 14)

where

δε(ψ)=


1
2ε

[
1+ cos

(
πψ

ε

)]
if |ψ |6 ε

0 otherwise
(A 15)

is the smoothed version of the delta function, defined as the derivative of Hε with
respect to ψ . The basis for this correction is discussed further in § A.2.

Step 4: Predictor step for the velocity field.
A provisional mid-step velocity u∗ is computed from un by omitting the pressure

gradient term in the momentum conservation equation and by using a mixed Crank–
Nicolson/Adams–Bashforth time stepping scheme:

u∗ − un

1t
=−C n+1/2 + 1

ρn+1/2
V n+1/2 +

(
1− 〈ρ〉

ρn+1/2

)
g− 1

ρn+1/2
F n+1/2, (A 16)

where C , V and F are spatial discretizations of the advection, viscosity and surface
tension terms respectively. The advection term is extrapolated at tn+1/2 using a third-
order Adams–Bashforth scheme:

C n+1/2 = 23
12C (u

n)− 16
12C (u

n−1)+ 5
12C (u

n−2), (A 17)
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where C is the discretization of u · ∇u based on a finite-difference fifth-order WENO
scheme for ∇u with a second-order interpolation of u when needed. The contribution
V is the discretized version of ∇ · µ(∇u + ∇uT), its component in the p-direction
expands in

V n+1/2
p =

3∑
q=1

{
Dq[µn+1/2(Dqup)

n+1/2] +Dq[µn+1/2(Dpuq)
n+1/2]} , (A 18)

where D are discrete spatial derivatives calculated using second-order central-
difference and interpolation schemes. The temporal discretization of the p-component
of the viscous contribution employs a semi-implicit Crank–Nicolson scheme for the
four terms involving the derivatives of up, and an explicit third-order Adams–Bashforth
scheme for the two terms involving the derivatives of uq6=p. This writes

Dq[µn+1/2(Dqup)
n+1/2] =Dq

(
µn+1/2

2
Dqun

p

)
+Dq

(
µn+1/2

2
Dqu∗p

)
, (A 19)

and

Dq[µn+1/2(Dpuq)
n+1/2] =

Dq

(
µn+1/2

2
Dpun

q

)
+Dq

(
µn+1/2

2
Dpu∗q

)
if p= q,

Dq
[
µn+1/2

(
23
12 Dpun

q − 16
12 Dpun−1

q + 5
12 Dpun−2

q

)]
if p 6= q.

(A 20)
The surface tension term is computed at tn+1/2 directly from ψn+1/2, i.e.

F n+1/2 =F (ψn+1/2), (A 21)

where F is the space discretization of γ κ∇Hε: κ is obtained from a second-order
centred finite-volume discretization of (3.3) and ∇Hε is computed using a second-
order central-differencing scheme. Note that the formulation of the singularity as ∇Hε

is preferred over the usual form δε(ψ)∇ψ because it effectively reduces the amplitude
of so-called spurious currents (Meland et al. 2007), some parasitic currents arising
from an inconsistent discretization of the surface tension force and the pressure
gradient. The resulting linear system is solved iteratively for u∗ using a hybrid
Jacobi/Gauss–Seidel algorithm.

Step 5: Density-weighted Poisson equation for pressure.
The pseudo-pressure p̃n+1/2 is obtained from

Dq

(
1

ρn+1/2
Dqp̃n+1/2

)
= 1
1t

Dqu∗q, (A 22)

where D is the second-order central-difference discretization of the spatial derivatives.
This system is solved by an over-relaxed Gauss–Seidel method.

Step 6: Corrector step for the velocity field.
The intermediate velocity u∗ is corrected by the pressure gradient term to obtain

un+1:
un+1 = u∗ − 1t

ρn+1/2
Dp̃n+1/2. (A 23)

The algorithm then proceeds to time step tn+1.
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FIGURE 25. Effects of resolution and of volume conservation enforcement on the rise of
an ordered array of strongly deformed bubbles (case C at φ= 1.6 % with ρd/ρc= 0.1 and
µd/µc = 0.1).

A.2. Validation and sensitivity tests
The results of some benchmark tests performed with our code were already presented
in § 3. We focus here on the fact that, in our simulations, volume conservation is
enforced at each time step by (A 12). This trick allows us to run simulations for
a virtually infinite amount of time. However, as it expands the interface position
uniformly (whereas volume losses may be localized), the numerical solution accuracy
might be deteriorated. The excellent agreement we obtained for ellipsoidal bubbles
with the results of Esmaeeli & Tryggvason (1999) (see figure 1), who do not
use such a correction, is therefore reassuring in this respect. Since it would be
nonetheless desirable to evaluate the performance of our code without enforcing
volume conservation, we disabled this fix and repeated the simulations of an ordered
array of skirted bubbles (case C in table 1), a shape much more challenging to
capture.

Simulations were carried out for φ = 1.6 %, ρd/ρc = 0.1 and µd/µc = 0.1. The
time evolution of the bubbles’ drift velocity is shown in figure 25 for resolutions
from 10 to 60 grid cells per bubble diameter, with and without volume conservation
enforcement. The bubble shapes obtained at tmid = 10

√
db/g and tend = 60

√
db/g

are reported in table 2 together with measurements of the volume variation (when
the volume fix is not used) and of the volume correction (when the volume fix is
used). When volume conservation is not imposed, the bubbles shrink inexorably, thus
preventing the system from reaching a steady state. As expected, the rate of mass gain
decreases as the grid refines: at tend, the bubbles have almost completely disappeared
with the coarsest grid (10 cells per bubble diameter), while the bubbles’ volume
has reduced by 21 % with the finest grid (60 cells per diameter). But even with
(reasonably) high resolution, volume conservation remains problematic for long-time
simulations. The volume correction we use to fix this issue is satisfactory, since
it conserves the bubbles’ volume without affecting their dynamics: at short times
(before volume loss becomes large), simulations with and without volume fix yield
the same results. The error made when modifying the location of the interface by an
amount 1ψ remains much smaller than the O(1x) global error in this region due to
the finite thickness of the interface (max |1ψ | ≈ 0.051x2.8, see table 2).

For completeness, we mention that in the simulations of ellipsoidal bubbles
presented in figure 1(a), the level-set correction is also found to be negligible
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TABLE 2. Sensitivity analysis of the effects of resolution and of volume conservation
enforcement on the shape of strongly deformed bubbles (case C at φ = 1.6 % with
ρd/ρc = 0.1 and µd/µc = 0.1, ordered array). Bubble shape (two-dimensional cutoff in
a symmetry plane) at tmid = 10

√
db/g and tend = 60

√
db/g, maximum magnitude of the

level-set correction, and volume relative variation between t0 and tend (1x is the grid
spacing, 1ψ is the level-set correction, Vd is the disperse phase volume).

(max |1ψ | ≈ 0.11x3.2), and that the volume loss in the absence of correction is very
small (between t = 0 and t = 30

√
db/g, 2.4 % and 0.1 % of the bubble volume are

lost for resolutions of 20 and 40 grid cells per bubble diameter, respectively). Finally,
we add that the magnitudes of the level-set correction in the simulations of ordered
and free arrays are comparable.

Appendix B. The first effect of inertia in ordered arrays of bubbles and drops
In this section we derive the first effect of inertia on the steady drift velocity

of an ordered suspension of spherical fluid particulates (bubbles or drops). The
Reynolds number of the particulates is assumed to be small so that the Navier–Stokes
equations can be linearized. Since all the particulates move with the same velocity,
this configuration is equivalent to that of a cubic array of fixed particulates immersed
in a viscous fluid moving with an average mixture velocity 〈u〉 = −U, and the
problem becomes that of determining the hydrodynamic force, denoted f , exerted
by the ambient fluid on a representative particulate of the array. It is customary to
non-dimensionalize f with the magnitude of the Stokes flow drag exerted on a single
particulate in unbounded fluid to define a normalized force F:

F= f
f0,Stokes

, (B 1)

where f = |f | and f 0,Stokes is the drag force exerted on an isolated spherical fluid
particulate in Stokes flow (Hadamard 1911; Rybczynski 1911):

f 0,Stokes =−2πµ∗µcdbU with µ∗ = µc + 3µd/2
µc +µd

. (B 2)
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Deviations of F from unity are induced both by hydrodynamic interactions and by the
external fluid inertia.

Hill et al. (2001) obtained, under the assumption of φ� 1, the first correction to
F due to a small but non-zero Reynolds number for a cubic array of rigid spheres
by matching the far-field fundamental periodic solution of the Oseen equations to
the near-field solution of the Stokes equations past an isolated rigid sphere. Their
derivation can be extended to cubic arrays of bubbles and drops by replacing the inner
solution for a rigid sphere by that for a fluid sphere, which yields the following linear
system from which f is determined:

f − 2.8373
3

µ∗
db

h
f − 2πµ∗

db

h
f · S = f 0,Stokes, (B 3)

where f 0,Stokes is given by (B 2) and h is the lattice spacing. We have here introduced
S, the dimensionless symmetric tensor given by

S =
∑
k∗ 6=0

Re2
h(U

∗ · k∗)2(I − k∗k∗/k∗2)

(2π)4k∗6
[

1+ Re2
h

(2π)2k∗4
(U∗ · k∗)2

] , (B 4)

with U∗ =U/U, Reh = ρcUh/µc, and k∗ = kh where

k= n1b1 + n2b2 + n3b3 n1, n2, n3 = 0,±1,±2, . . . (B 5)

are the vectors in the reciprocal lattice defined by the primitive vectors bi. Therefore,
at finite Reynolds numbers, the force exerted on a particulate and the drift velocity
have, in general, different directions. Note that in the limit of Reh→∞ (that is, φ→
0), one recovers the result of Brenner & Cox (1963) for the first inertial contribution
to the normalized drag on a single fluid particulate translating in an unbounded fluid

1
F
= 1− 1

8
µ∗Re for φ→ 0. (B 6)

We first consider the specific situation where the drift velocity is aligned with a
primary axis of the cubic array. In that case the off-diagonal components of S are
zero and the total force f is parallel to the drift velocity U. In the limit Reh→ 0, the
solution of (B 3) reads

1
F
= 1− 1.1734µ∗φ1/3 − 0.0050µ∗Re2φ−1/3 +O(Re4

h) for φ1/3�O(Re). (B 7)

For intermediate values of Reh, the longitudinal component of S, denoted S‖=U∗ ·S ·
U∗, is needed and can be computed numerically. In practice, the simple expression

S‖ ≈ Reh

16π+ (2π)4

1.53Reh

(B 8)

provides a reasonable estimate of S‖ for any Reh and F can be approximated at any
φ� 1 by

1
F
≈ 1− 1

8
µ∗Re− 1.1734µ∗φ1/3 + 25

8
µ∗

Reφ1/3

Re+ 25φ1/3
. (B 9)
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At steady state, the total force exerted by the fluid on the particulate is balanced with
the buoyancy force so the solution of the sedimentation problem relates to F through
the identity

U
U0,Stokes

= 1
F
. (B 10)

We now look for the existence of non-vertical solutions for the drift velocity in
the case where the system is buoyancy driven. The problem is then reversed: the
hydrodynamic force acting on the bubble is prescribed (it opposes buoyancy) and one
wants to determine the drift velocity of the bubbles. We further assume that gravity
is aligned with an axis of the lattice and write g=−ge3. The buoyancy force is then

f buoy =
1
6
πd3

b(ρc − ρd)ge3 = 1
6
π
µ2

c

ρc
Ar2e3. (B 11)

Replacing f =−f buoy in (B 3) yields the following nonlinear system of dimensionless
equations

U∗1 =
1

96π3
Ar2Rehs13 (B 12a)

U∗3 =
Ar2

12Reh

(
1
µ∗

h
db
− 2.8373

3
− 2π

Re2
h

(2π)4
s33

)
(B 12b)

U∗1 +U∗2 +U∗3 = 1, (B 12c)

where sij = (2π)4Sij/Re2
h and from which U=Uiei can be determined.
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