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Interaction between a large buoyant bubble and turbulence

Aurore Loisy and Aurore Naso*
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The free rise of isolated, deformable, finite-size bubbles in otherwise homogeneous
isotropic turbulence is investigated by direct numerical simulation. The Navier-Stokes equa-
tions are solved in both phases subject to the pertinent velocity and stress conditions at the
deformable gas-liquid interface. The bubble rise velocity is found to be drastically reduced
by turbulence, as is widely known for microbubbles. The probability distribution functions
of the horizontal bubble acceleration component are well fitted by a log-normal distribution.
The distributions of the vertical components are negatively skewed, a property related to
the fact that bubbles experience on average stronger decelerations than accelerations. An
assessment of the correlations of bubble acceleration with properties of the surrounding flow
is used to define estimates of the liquid velocity and vorticity entering in liquid acceleration
and lift forces. Finally, fast rising bubbles are found to preferentially sample downflow
regions of the flow, whereas those subjected to a higher turbulence level have an increased
residence time in swirling regions, some features similar to those of small bubbles.
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I. INTRODUCTION

The ability to describe the behavior of turbulent bubbly flows is crucial for the design and operation
of industrial equipment for a wide range of applications (e.g., oil or gas transport, nuclear reactors,
CO2 capture). The complexity of the coupling of turbulence and multiphase flow is a formidable
challenge and one is bound to rely on empirical correlations to predict the behavior of such systems.

The trajectories of bubbles that are smaller than the smallest length scales of the flow can be
computed in a Lagrangian manner from the integration of an explicit equation of motion and their
action on the surrounding flow can be modeled by point forces acting on the carrier phase. This
approach has been extensively used to investigate the dynamics of microbubbles in three-dimensional
homogeneous isotropic turbulence and their backreaction on the surrounding flow [1–6]. These
studies highlighted the crucial role played by the lift force in retarding the rise of small bubbles and
on the modulation of turbulence by their presence.

However, in many situations of practical interest, the characteristic size of the bubbles is in the
inertial range of scales. In that case, the bubble dynamics cannot be accurately captured by standard
point-bubble models [7]. To properly capture the physics of turbulent flows laden with finite-size
bubbles in a numerical simulation, all the scales of the carrier flow and of the disturbances induced
by their motion would have to be resolved, in the current absence of accurate simplified models.

The dynamics of finite-size particulates in a turbulent environment has been studied experimen-
tally, but primarily for solid particles [8–13]. Experiments on bubbles have also been conducted
recently [14,15], but the measurement of the carrier-phase velocity field in the immediate vicinity of
the particulates remains a difficult task. It is therefore of interest to investigate whether fully resolved
numerical simulations can usefully complement laboratory experiments.

While the simulation of the interaction between isotropic turbulence and large solid spherical
particles has been recently performed in increasingly complex configurations (fixed particle [16],
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free nonbuoyant particle [17,18], and settling particles [19]), the case of clean bubbles still remains
largely uncharted territory: The state of the art amounts to the early large-eddy simulations of [20,21],
which considered a large bubble with imposed spherical shape held fixed on the axis of a weakly
turbulent pipe flow. Direct numerical simulations of turbulent bubbly flows with well-resolved
gas-liquid interfaces are rather commonly performed in highly inhomogeneous situations (vertical
channels) (see, e.g., [22–25]). Compared to those of solid particles, direct numerical simulations of
bubbly flows are even more challenging because internal gas circulation and interface deformation
need to be accounted for, which in turn requires solving in both phases the Navier-Stokes equations
subject to the pertinent conditions at the deformable moving interface.

We present in this paper the results of direct numerical simulations (DNSs) of a single, deformable,
finite-size bubble freely rising in an otherwise homogeneous isotropic turbulent flow. In the present
investigation the turbulence intensity, defined as the ratio between the root mean square of velocity in
a one-phase flow and the bubble rise velocity in a liquid at rest, is of order one. The methodology is
first described in Sec. II. Results are presented in Sec. III: The deformation, velocity, and acceleration
statistics of a large bubble rising in a turbulent environment are first characterized (Sec. III A),
followed by an investigation of whether the bubble acceleration is correlated to appropriately defined
liquid flow properties (Sec. III B), after which the liquid flow sampled by the bubble is investigated
(Sec. III C). A summary is given in Sec. IV.

II. METHODOLOGY

A. Physical parameters

We investigate in this paper the statistically stationary rise of a single buoyant bubble in an
otherwise homogeneous isotropic turbulent liquid flow. The primary dimensionless parameter
characterizing the interaction between buoyant bubbles and turbulence is the turbulence intensity
β = u0/VT [1–6], where u0 is the root mean square of the liquid velocity fluctuations in the absence
of the bubble and VT is the terminal bubble velocity in still liquid. In the present study, β is O(1) and
is modified through VT as explained in the next paragraph. The bubble characteristic size db, defined

as the diameter of the volume-equivalent sphere, is equal to the Taylor microscale λ =
√

15νu2
0/ε0,

where ν is the kinematic viscosity of the liquid and ε0 is the mean dissipation rate per unit mass
of the single-phase flow. The ratios between db and the turbulence length scales (Kolmogorov scale
η = (ν3/ε0)1/4, Taylor scale λ, and integral scale L = u3

0/ε0), as well as the Taylor Reynolds number
Reλ = u0λ/ν, are kept constant throughout the study: η/db = 0.098, λ/db = 1.0, L/db = 2.1, and
Reλ = 30. The rather low value of Reλ, which results in a weak separation of space and time scales,
is due to the fact that the spectral methods classically used for the simulation of turbulent flows are
not suitable in the presence of different fluids and that calculations performed in the physical space
are much more computationally demanding (in particular because of the pressure calculation). It can
be noticed that highly relevant results for the interaction between turbulence and solid particles have
been obtained for similar values of Reλ [16,17], and it will be shown in Sec. III that the standard
features of turbulence are recovered in our simulations.

Other dimensionless parameters, independent of the turbulence level, characterize the bubble
rise in a liquid at rest. In this configuration, the terminal bubble velocity and shape depend on
two dimensionless groups that measure the relative strengths of the buoyancy, viscous, and surface
tension forces acting on the bubble: the Bond and the Archimedes numbers. The Bond number
(also known as the Eötvös number) is defined as Bo = gd2

b �ρ/γ , where �ρ ≡ ρl − ρg is the
density difference between the liquid and the gas phases and γ denotes the surface tension. It is
set to a fixed value Bo = 0.38, which yields in quiescent conditions a nearly spherical (though
deformable) bubble. This choice allows the bubble to deform without breaking up in the presence of
an intense background turbulent flow. The Archimedes number (also known as the Galileo number)
Ar =

√
gd3

bρl�ρ/ν is the variable parameter (its values are given in Table I) that determines VT , the
terminal velocity of the bubble in still liquid. This velocity is estimated herein using the correlation
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TABLE I. Bubble parameters calculated a priori in the three runs: Ar, Archimedes number;
ReT = dbVT /ν, terminal bubble Reynolds number based on VT , the terminal velocity of the bubble
in quiescent conditions; and β = u0/VT , turbulence intensity.

Ar ReT β

40.7 62.5 0.46
27.2 31.4 0.90
19.2 17.6 1.60

of [26], which allows us to define a priori a characteristic bubble Reynolds number ReT = VT db/ν.
For the range of parameters considered here, ReT was found to be of order 10, so in quiescent liquid
the bubble motion is steady, vertical, and its wake is laminar, steady, and attached to the bubble.

B. Numerical method

Direct numerical simulations of a large deformable bubble rising in an otherwise homogeneous
and isotropic turbulent flow have been performed. For this, the fluid motion must be solved in both
the liquid and the gas with the appropriate jump conditions at the fluid-fluid boundary, namely,
the continuity of velocity and of shear stress across the interface (owing to the absence of phase
change and surface tension gradients, respectively), and a jump in normal stress equal to the surface
tension force per unit area. These sets of equations coupled through interfacial jump conditions were
integrated numerically using our three-dimensional DNS code, a brief description of which is given
hereinafter.

In short, the incompressible Navier-Stokes equations for the two fluids are combined into a
one-fluid formulation that accounts for the interface conditions and are solved by a projection
method [27], the deformable gas-liquid interface is captured by a modified level-set method [28,29],
and surface tension is accounted for using the continuum surface force model [30]. These are
described in the following.

The velocity and pressure field are solutions of the system of equations

D(ρu)

Dt
= −∇p + ∇ · [μ(∇u + ∇uT )] + (ρ − 〈ρ〉)g − γ κ + ρfHε(ψ), (1)

∇ · u = 0, (2)

where D/Dt is the material time derivative, u stands for the velocity field, p stands for the pressure
one, g = −gez is the gravitational acceleration, ρ and μ respectively denote the local density and
dynamic viscosity, 〈ρ〉 is the system average density that must be subtracted from the local one in
the buoyancy term to prevent the entire system from accelerating in the downward vertical direction,
γ κ stands for the effect of surface tension (this term is nonzero at the gas-liquid interface only),
and ρf is a forcing term allowing us to maintain a statistically stationary level of turbulence. More
details on the latter will be given in Sec. II C. The Hε(ψ) factor allows us to apply this term in the
liquid phase only, Hε denoting the smoothed Heaviside function

Hε(ψ) =
⎧⎨
⎩

1 for ψ > ε

0 for ψ < −ε
1
2

[
1 + ψ

ε
+ 1

π
sin

(
πψ

ε

)]
for |ψ | � ε,

(3)

where ε = 1.5�x (with �x the grid spacing) and ψ denotes the level-set function, positive in the
liquid and negative in the gas. The surface tension term is calculated from the level-set function [28]

κ =
[
∇ ·

( ∇ψ

|∇ψ |
)]

∇Hε (4)
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and the (local) density and viscosity are given by

ρ = Hε(ψ)ρl + [1 − Hε(ψ)]ρg, μ = Hε(ψ)μl + [1 − Hε(ψ)]μg. (5)

In our simulations, the gas-to-liquid density and viscosity ratios were set to ρg/ρl = 10−3 and
μg/μl = 10−2, respectively. These are representative of most bubbly flows of practical interest,
such as air bubbles in water.

The level-set function ψ is initially defined as the signed distance to the interface and evolves
by integrating an advection equation. A drawback of basic level-set methods is their poor ability to
conserve the mass of each phase. Specific methods must therefore be used to solve this issue. To
this aim, a source term is embedded in our code in the advection equation of the level-set function,
as proposed by [29]

Dψ

Dt
= A(u,ψ)ψ with A(u,ψ) = ∇iψ∇iuj∇jψ (6)

[A(u,ψ) is the local zeroth-order approximation of the source term in the region close to the
interface], and ψ is reinitialized at each time step using the procedure devised by [31]. These two
improvements allow us to maintain the level-set function as a signed distance function close to the
interface and thereby to improve the mass conservation. An exact mass conservation is enforced at
each time step using the correction proposed by [32], which consists in slightly shifting the level-set
function ψ by an amount �ψ in such a way that the volume of each phase remains constant. We have
checked that the magnitude of this correction is negligible (max |�ψ |/�x � 10−6 in the present
simulations). A more detailed description of the numerical method and the results of benchmark
tests in laminar flows can be found in [33].

The governing equations (1) and (2) are solved by a projection method [27]. Our time integration
algorithm is based on a third-order TVD (total-variation-diminishing) Runge-Kutta scheme for the
level-set equation and on a mixed Crank-Nicolson–third-order Adams-Bashforth scheme for the
Navier-Stokes equations. For spatial derivatives, we employ a standard mixed finite-difference–
finite-volume discretization on a uniform Cartesian staggered grid: Fifth-order WENO (weighted
essentially nonoscillatory) schemes are used for advection terms and second-order centered schemes
are used otherwise. In our simulations the grid spacing was set to �x = 0.64η = db/16, a resolution
found to be sufficient at the Reynolds number considered, and the Courant number based on the
instantaneous maximal velocity was always less than 0.1. A more detailed description of the code
as well as the results of some benchmark tests is provided in [33].

Periodic boundary conditions are applied at the boundaries of the cubic computational domain,
of linear dimension h = 12db. This configuration effectively corresponds to a cubic array of bubbles
with volume fraction of 0.03%. It was shown in [33] that even at very low volume fraction a
bubble rising in quiescent liquid may be affected by the wakes of its preceding neighbors. The
situation is however very different here. The carrier phase is now turbulent with velocity fluctuations
u0 comparable to the bubble velocity VT (β = u0/VT ∼ 1; see Table I). Prior work on spherical
bubbles and particles set fixed in a weakly turbulent environment showed that the velocity defect
in the (laminar) wake first decays as z−1 (z being the downstream distance to the particulate) and
then follows a z−2 power law from the point where the magnitude of the velocity defect and that
of the turbulent velocity fluctuations become of the same order [21,34,35]. Assuming a z−2 decay
law, a coarse estimate of the wake velocity uz at a downstream distance z = h from the bubble is
uz/u0 ∼ (VT /u0)(h/db)−2 ∼ 10−2 � 1. It therefore seems reasonable to consider that a bubble is not
affected by the wakes of its periodic images. The wake can also be characterized by the measurement
of vorticity. We have checked numerically that the enstrophy statistics were not influenced by the
presence of the bubble already at a distance of 2db from it. The negligible effect of periodicity will
also be confirmed a posteriori in Sec. III C.
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C. Turbulence forcing

The turbulence level was kept statistically stationary in our system through the use of a slightly
modified version of the linear forcing proposed by [36], according to which the term f in Eq. (1)
should be proportional to the velocity vector. This forcing scheme provides the advantage that it is
formulated in physical space. It has been shown to yield the same results as spectral implementations
of low-wave-number forcing for single-phase flow turbulence [37] and has been used in prior studies
of turbulent two-phase flows in [16] (fixed solid sphere) and [38] (interface-resolved gas-liquid
flow). Gravity, however, was not included in these studies. The use of the linear forcing in two-phase
systems where gravity is accounted for leads to an unbounded growth of the kinetic energy and, as
a consequence, does not allow a stable stationary state to be reached. However, this problem can be
easily overcome by suitably modifying the expression of f, as we now demonstrate.

In Eq. (1) the forcing f is defined by f = Qu∗, with Q a positive constant. If one sets u∗ = u as
in nonbuoyant single-phase flows [36,37], the net force on the liquid N = ρlQ

∫
Vl

u∗dx is not zero,
because the volume integral of u over the liquid phase is not strictly zero (the upward motion of
the bubble must be compensated by a downflow of liquid). As a consequence, the presence of the
forcing induces an exponential growth of the liquid mean flow, as observed by [19]. We solved this
issue by subtracting the instantaneous mean liquid velocity 〈u〉l from the local one in the definition
of u∗:

u∗ = u − 〈u〉l with 〈u〉l = 1

Vl

∫
Vl

u dx, (7)

where Vl is the volume of the liquid phase and Vl denotes the set of points belonging to it. With
this definition, N = 0 is satisfied; therefore, the forcing has no net effect on the liquid phase and a
statistically stationary state can be reached. Note that even in the absence of gravity it is generally
desirable to subtract the residual mean flow to ensure stability, as noticed in [16].

D. Simulation procedure

We now describe the simulation procedure. A carrier turbulent flow with a Taylor-microscale
Reynolds number Reλ = 30 was first generated in the periodic computational domain. An initially
spherical bubble with db = λ was then introduced and the resulting two-phase flow was evolved
until a statistically stationary state was reached (this was checked by monitoring the time signals
of the bubble velocity and liquid kinetic energy). The simulation was then continued over a time
period of O(400TL), with TL = u2

0/ε0 the large-eddy turnover time, during which liquid Eulerian
and bubble Lagrangian quantities were time averaged to get the statistics presented in Sec. III. This
procedure was used for each of the values of the turbulence intensity β considered.

As the center of mass of the bubble is not tracked explicitly in our method, computing the bubble
velocity in a Lagrangian manner would have been cumbersome. The instantaneous bubble velocity
V was instead calculated using the following expression:

V = 〈u〉g where 〈u〉g = 1

Vg

∫
Vg

u dx, (8)

where Vg is the volume of the gas phase (that is, the bubble volume) and Vg denotes the set of points
belonging to it. It has been checked that this definition yields the same result as the computation
of dX/dt , where X is the position of the bubble center of mass. Moreover, since the computational
domain is sufficiently larger than the bubble, the velocity defined by Eq. (8) is indistinguishable
from the drift velocity classically used in bubbly flows, U = 〈u〉g − 〈u〉, where 〈 〉 denotes a volume
average over the entire domain (in our simulations, |〈ui〉/〈ui〉g| � 5×10−4 for any i ∈ {x,y,z}, at
any time and for any β). Such a distinction would be relevant for much larger gas volume fractions
only.

For comparison purposes, we also simulated the rise of the same bubbles in otherwise quiescent
liquid (using the same code with the same parameters, but with the forcing term set to zero). For each
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FIG. 1. Sample bubble trajectories and their projections on horizontal and vertical planes for (a) β = 0.46,
(b) β = 0.90, and (c) β = 1.60. Bubbles are rising upward; the outer box shown in light gray is a parallelepiped
of width 7h and height 14h, with h the size of the computational domain. The color code shows instantaneous
bubble vertical velocity normalized by the terminal velocity of the same bubble rising in still liquid.

of the three flow regimes listed in Table I we proceeded as follows. The liquid was initially at rest
and the bubble, initially at rest and spherical, was allowed to rise freely through the domain under
the effect of gravity. In all cases the bubble motion was perfectly rectilinear. After a transient period,
the bubble velocity and shape became steady (the numerically obtained bubble velocity was constant
and comparable to that predicted by the correlation of [26] used to defined ReT in Table I and the
bubble shape was nearly spherical). The bubble and liquid flow properties in quiescent conditions
mentioned in Sec. III were computed at this steady state.

III. RESULTS

A. Statistical description of the bubble motion and deformation

In a quiescent liquid (β = 0), the bubbles considered here would rise along straight vertical paths.
As the turbulence intensity β is increased, their trajectories become more erratic and progressively
deviate from vertical lines, as illustrated in Fig. 1. This section is devoted to the characterization
of the bubble motion and deformation. In what follows, V denotes the bubble velocity, defined in
Eq. (8), and A = dV/dt is its acceleration. The overbars indicate time averaging. Subscripts x,y

and z denote the two horizontal and the vertical components of vectors, respectively (buoyancy
acts in the positive z direction since g = −gez). Since the two horizontal directions are equivalent,
Lagrangian statistics for the x and y components have been combined.

1. Deformation

We first examine the bubble deformation statistics and compare them with their values in a liquid
at rest. Deformation is characterized here through the bubble sphericity, defined as the ratio between
the surface of a volume-equivalent sphere and that of the bubble (lower sphericity corresponds to
greater departure from a spherical shape). A spectral analysis of the sphericity time signals (not
shown) reveals the absence of any dominant frequency: The bubbles do not experience periodic
shape oscillations. The mean sphericity and the root mean square of its fluctuations are provided
in Table II for each β. For an easier interpretation we also provide for each case the aspect ratio
of a spheroid with the same sphericity. As expected, the bubble is more deformed at increasing
turbulence intensity and this deformation is on average stronger in turbulent conditions than in still
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TABLE II. Bubble deformation in quiescent (subscript T ) and turbulent conditions (in that case
overbars indicate time averaging and the numbers in parentheses correspond to the root-mean-square
fluctuations around this mean value): �, bubble sphericity, defined as the ratio between the surface
of a volume-equivalent sphere and that of the bubble, and χ eq, aspect ratio of an oblate spheroid with
sphericity �.

β �T � χ
eq
T χ eq

0.46 0.9944 0.9918 (±0.0031) 1.19 1.23 (−0.05,+0.05)
0.90 0.9946 0.9919 (±0.0040) 1.19 1.23 (−0.07,+0.06)
1.60 0.9948 0.9869 (±0.0094) 1.18 1.31 (−0.16,+0.11)

liquid. Due to the low value of the Bond number, it nevertheless remains overall modest, the aspect
ratios of the equivalent spheroids always being smaller than 1.4.

2. Velocity

We now examine the statistics of the bubble velocity. Its componentwise variance and the average
of Vz are listed in Table III. The most noticeable feature here is the fact that Vz is significantly
lower (by 60%–77%) than that of the same bubble in an infinite quiescent liquid. Such a reduction
of the rise velocity under the effect of turbulence was already reported for much smaller bubbles
[3,5,6,39–41]. In these investigations, a similar reduction in rise velocity was obtained for comparable
β. Interestingly, the velocity reduction in our simulations is maximum when β ≈ 1 (for point bubbles,
both nonmonotonic [3] and monotonic [5,6] evolutions of Vz/VT with β have been reported, thereby
indicating that the value of β alone is not sufficient to predict the rise velocity reduction). We find
that the variances of the vertical and horizontal components of V are of the same order. They are, up
to statistical uncertainty, equal to u2

0 (the variance of the liquid velocity components in a one-phase
flow) for the lowest value of β and lower than it for β � 1.

More detailed information is provided in Fig. 2, in which the probability density functions (PDFs)
of the horizontal and vertical velocity fluctuations vi = Vi − Vi normalized to unit variance are
plotted. These distributions are roughly Gaussian, as is widely known for tracers and small inertial
particles [42], as well as for finite-size solid particles [9,17,19]. For inertial particulates, a weak
asymmetry (either positive or negative) in the distribution of the vertical velocity fluctuations
has been reported for point bubbles [3,6], for finite-size bubbles (although smaller than in the
present simulations) [15,40], and more recently for large buoyant solid particles [19]. These prior
results indicate that the shape of the vertical velocity PDF depends in a complex manner on β

and presumably on other factors such as Reλ or the bubble size compared to the turbulence length
scales. Since we chose to simulate the dynamics of isolated bubbles, only one object could be put
in the domain and obtaining accurate high-order Lagrangian statistics is definitely out of reach. It
is therefore difficult to make a definitive statement about the effect of β on such an asymmetry

TABLE III. Nonzero mean and variance of the bubble velocity components, for each value of
the turbulence intensity β: VT , terminal bubble velocity in quiescent conditions, estimated from [26];
u2

0, variance of the liquid velocity in the absence of the bubble; V, bubble velocity; and v = V − V,
bubble velocity fluctuation.

β Vz/VT v2
x,y/u

2
0 v2

z /u
2
0

0.46 0.40 ± 0.04 0.97 ± 0.03 0.98 ± 0.05
0.90 0.23 ± 0.12 0.73 ± 0.02 0.77 ± 0.04
1.60 0.37 ± 0.04 0.76 ± 0.02 0.70 ± 0.04
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FIG. 2. PDFs of the (a) horizontal and (b) vertical components of the bubble velocity fluctuations
vi = Vi − Vi , normalized to unit variance. The solid black line shows the Gaussian distribution.

in the distribution of the vertical velocity fluctuations. In any case, the degree of departure from

Gaussianity in our simulations, if any, is small: We measured skewnesses |v3
z /v

2
z

3/2| < 0.3 and

flatnesses v4
i /v

2
i

2 = 3.1 ± 0.3 for i = x,y,z. Finally, although direct comparison to prior work on
small bubbles is not possible (essentially because of the mismatch in the values of Reλ, db/L,
and ReT ), it is worth mentioning that nearly Gaussian vertical velocity distributions have also been
obtained for β ≈ 0.5 [3,40] and for β ≈ 1.2 [6].

3. Acceleration

We now turn to the statistics of the bubble acceleration components. The mean bubble acceleration
is zero and the componentwise acceleration variance normalized by g2 is reported in Table IV. For
any β the horizontal and vertical variances are of the same order. They depend on β: a2

i ≈ g2 for the

smallest value of β considered here, when buoyancy effects are the strongest, and a2
i ≈ 10g2 for the

largest β.
Figure 3 represents the PDFs of the horizontal and vertical components of the bubble acceleration

fluctuations ai = Ai − Ai normalized to unit variance. These PDFs are highly non-Gaussian and
exhibit large tails, as already evidenced for fluid tracers and small inertial particles [42] and more
recently for finite-size solid particles [9,17,19,43]. As shown by the dashed line in Fig. 3(a), our data
for the horizontal components of acceleration are well fitted by a log-normal distribution

p(ai) = e3σ 2/2

4
√

3

[
1 − erf

(
ln(|ai/

√
3|) + 2σ 2

√
2σ

)]
, (9)

TABLE IV. Variance of the bubble acceleration components for each value of the turbulence
intensity β: a = A − A, bubble acceleration fluctuation, and g, magnitude of the gravitational
acceleration.

β a2
x,y/g

2 a2
z /g

2

0.46 1.23 ± 0.01 1.08 ± 0.01
0.90 3.03 ± 0.03 3.12 ± 0.06
1.60 10.14 ± 0.40 9.51 ± 0.80
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FIG. 3. PDFs of the (a) horizontal and (b) vertical components of the bubble acceleration fluctuation
ai = Ai − Ai , normalized to unit variance. The solid black line shows the Gaussian distribution and the dashed
black line the log-normal fit of the horizontal component distributions [Eq. (9) with σ = 0.66].

proposed in [44] for tracers. The best fit (in the sense of least squares) is obtained for σ = 0.66 ± 0.01,

which corresponds to a distribution flatness a4
i /a

2
i

2 = 10.3. As a comparison, the same relation
was found to describe correctly experimentally obtained acceleration statistics of rigid particles of
different sizes and densities, with a flatness of 8.5 [43,45]. Other data numerically obtained for
finite-size neutrally buoyant solid particles exhibited the same behavior, with flatnesses between
6 and 8.5 [17,19]. The previously mentioned fits would be nearly indistinguishable from ours and
are therefore not shown in Fig. 3(a). For buoyant solid particles with db = 6.7η = 0.42λ, Ref. [19]
obtained a noticeably smaller flatness of 3.9 for the horizontal component of the particle acceleration,
although no explanation could be offered for this low value (on a side note, it is not clear that their
particles can be strictly considered as isolated).

An additional property evidenced by our simulations is the negative asymmetry of the distribution
of the vertical acceleration component, particularly visible for the most buoyant bubble (β = 0.46).

In quantitative terms, we measured skewnesses a3
z /a

2
z

3/2 = {−1.0 ± 0.3, − 0.6 ± 0.6, − 0.5 ± 0.2}
for β = {0.46,0.90,1.60}, although some reservations must be expressed regarding the accuracy of
these values given the limited amount of data from which they are computed. Since the vertical
direction is parallel to the average direction of motion, this feature may be reminiscent of the
negative skewness of the longitudinal acceleration distribution, a property recently evidenced for fluid
tracers [46,47].

To support this hypothesis, we show in Fig. 4 the PDF of the longitudinal acceleration A‖ =
A · V/|V|. The mean of A‖ is zero, but its distribution is undoubtedly negatively skewed for all the

considered values of β: Its skewness is A3
‖/A

2
‖

3/2 = −0.6 ± 0.1 (with the same reservations about
accuracy as above) and is virtually independent of β. Therefore, the β dependence of the vertical
acceleration distribution in Fig. 3(b) can be explained by the fact that the bubble velocity is more and
more preferentially oriented in the vertical direction, that is, the bubble path gets closer to a vertical
line, at decreasing β (see Fig. 1). Furthermore, the distribution of the longitudinal acceleration of an
inertial object is shown to be negatively skewed. Since the longitudinal acceleration represents the
velocity magnitude rate of change (A‖ = d|V|/dt), this means that a finite-size bubble undergoes,
on average, stronger deceleration than (positive) acceleration. We have checked that this holds as
well in a frame moving at the bubble velocity: The PDF of a‖ = a · v/|v| is similar to that of A‖,
with a negative skewness of the same order. In the Lagrangian framework, the negative asymmetry
of the longitudinal acceleration distribution of tracers is a signature of the time irreversibility of
turbulence. Finally, it is worthwhile to note that the same analysis could provide an interpretation of
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FIG. 4. PDF of the bubble longitudinal acceleration A‖ = A · V/|V|, normalized to unit variance. The solid
black line shows the Gaussian distribution.

the positively skewed shape (skewness of 0.63) of the vertical acceleration PDF recently reported
for finite-size sedimenting solid particles [19].

B. Modeling of hydrodynamic forces

In the present simulations, the bubbles remain close to spherical, as shown in Table II. An
often-used equation of motion for a spherical bubble at moderately high Reynolds number in an
arbitrary flow is [48]

A = α − 1

α + CM

g + 1 + CM

α + CM

DU0

Dt
+ CL

α + CM

(U0 − V) × �0 + 1

α + CM

3CD

4db

|U0 − V|(U0 − V)

+ 1

α + CM

18ν

d2
b

∫ t

−∞
K(t − τ )

d(U0 − V)

dτ
dτ, (10)

where A = dV/dt is the bubble acceleration, α = ρg/ρl denotes the gas-to-liquid density ratio, and
U0 and �0 are, respectively, the undisturbed fluid velocity and vorticity at the bubble position. This
approximate equation derives from a force balance that includes buoyancy (yielding the first term
on the right-hand side), undisturbed liquid acceleration and acceleration reaction force (resulting,
when combined, in the second term), lift (third term), steady drag (fourth term), and history force
(last term). In addition, CM , CL, and CD are the corresponding added mass, lift, and steady drag
coefficients, respectively, and K is the history kernel. Equation (10) assumes length and time scales
of the flow to be large compared to those of the bubble. The validity of adding these various forces
is not clear a priori and some of the coefficients in it may depend on a Reynolds number and a shear
rate, as discussed further in [48].

Despite these reservations, Eq. (10) may provide a first approximation of the bubble dynamics.
A significant further issue with it lies in the fact that the notion of unperturbed flow at bubble
position is then irrelevant, since the base flow varies over length scales smaller than O(db) and the
bubble modifies it in its neighborhood. A first step toward the extension of Eq. (10) to finite-size
bubbles therefore consists in finding adequate definitions for U0 and �0. A conceivable approach,
first proposed in [20], consists in defining these quantities as volume averages of the fluid velocity
and vorticity over appropriate volumes in the bubble surroundings. This idea was proven successful
in [16], which showed that the fluid angular velocity appearing in the torque equation of a fixed
solid particle much larger than η can be defined in terms of the fluid vorticity averaged over a shell
concentric with the object.

We undertake here an approach similar to that used in [16]: The idea is to replace U0 (�0) in
Eq. (10) by its counterpart 〈u〉s (〈ω〉s , with ω = ∇ × u) defined as the average of the local liquid
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velocity (vorticity) over a volume comprised between the gas-liquid interface and a surface located
at a distance s from it. Formally, this average reads

〈q〉s(t) = 1

Vs(t)

∫
V(s,t)

q(x,t)dx with Vs(t) =
∫
V(s,t)

dx, (11)

where V(s,t) contains the points in the liquid phase such that 0 � ψ(x,t) � s at time t , with ψ the
normal distance to the interface. If this volume-averaging approach is appropriate and if Eq. (10)
provides a descent approximation of the bubble dynamics, it might be possible to find a value
of s for which the bubble acceleration A is reasonably correlated to d〈u〉s/dt , (〈u〉s − V), and
(〈u〉s − V) × 〈ω〉s . Given that the adequate shell thickness s may a priori depend on the nature
of the force involved, we will treat the second, third, and fourth terms on the right-hand side of
Eq. (10) separately. Owing to the lack of a reliable expression of the history kernel K for a bubble in
nonrectilinear motion at finite Reynolds number [48], the history term cannot be treated rigorously
and is therefore not investigated.

We first investigate the second term on the right-hand side of Eq. (10), which represents the
combination of the acceleration reaction force and the effect of the undisturbed fluid acceleration
and in which the unknown variable is U0. Under the assumption of a near-spherical bubble shape,
CM is constant and is unimportant for the present purpose since it only affects the force magnitudes,
not their correlation with the acceleration. We will now determine the thickness sacc

u of the shell
over which u should be averaged for estimating U0 at best. Recalling that part of the force arises
from the undisturbed fluid acceleration integrated over the bubble volume, it seems reasonable to
expect the shell volume to be comparable to it, which yields an expected value of sacc

u = 0.13db,
assuming the bubble to be nearly spherical. The optimal shell thickness sacc

u has been determined
from our simulations by maximizing the componentwise correlation between A and Facc, the latter
being defined by

Facc = d〈u〉sacc
u

dt
, (12)

in which the unimportant factor (1 + CM )/(α + CM ) is omitted. The maximum correlation
coefficients were obtained for sacc

u /db = 0.15 ± 0.05 whatever β, in agreement with our expectations.
They are remarkably high (between 0.85 and 0.89, depending on β and on the component considered),
as shown in Table V. This strong correlation is also visible in Fig. 5, in which the componentwise
joint PDFs of A and Facc are plotted for β = 0.46. The results obtained for the other values of β are
not shown but display the same behavior.

We now turn to the lift contribution to the bubble acceleration [third term on the right-hand side
of Eq. (10)], which involves three unknown quantities CL, U0, and �0. The lift coefficient CL for a

TABLE V. Thicknesses of the shells over which the liquid velocity and vorticity should be averaged in the
estimates of U0 and �0, which maximize the componentwise correlation between the bubble acceleration A
and hydrodynamic forces in Eq. (10), and values of the associated correlation coefficients: su and sω, thickness
of the shells over which the liquid velocity and vorticity are respectively averaged; Cx,y and Cz, correlation
coefficients between the horizontal and vertical components of A and of the forces; superscripts acc and lift
respectively refer to the second and third terms on the right-hand side of Eq. (10); and δ, thickness of the
viscous boundary layer, estimated from δ/db = √

2/Reb. The uncertainty on sacc
u /db and s lift

ω /db is ±0.05 and
the uncertainty on s lift

u /db is ±0.25.

β sacc
u /db Cacc

x,y Cacc
z s lift

u /db s lift
ω /db C lift

x,y C lift
z δ/db

0.46 0.15 0.88 0.86 1.25 0.20 0.77 0.76 0.22 (−0.04,+0.07)
0.90 0.15 0.87 0.87 1.25 0.25 0.66 0.68 0.27 (−0.05,+0.11)
1.60 0.15 0.86 0.85 1.00 0.30 0.63 0.61 0.30 (−0.06,+0.12)

014606-11



AURORE LOISY AND AURORE NASO

− 4 − 2 0 2 4

− 5

0

5

Fx,y
acc

A
x,

y

− 4 − 2 0 2 4

− 5

0

5

Fz
acc

A
z

−6

−5

−4

−3

−2

−1

log10 PDF(Ai,Fi)

FIG. 5. Componentwise joint PDFs (logarithmic grayscale) of the bubble acceleration A and
Facc = d〈u〉sacc

u
/dt , for β = 0.46. The value of sacc

u is given in Table V.

spherical bubble depends a priori on the Reynolds number, the shear rate, and possibly other factors
[49,50], but will be assumed to be constant in the results presented hereafter (we have checked that
using the expression of CL proposed by [49], which includes dependences on Reynolds number
and shear rate, yields identical results). Under this assumption, its exact value is unimportant for
the present purpose. The optimal shell thicknesses s lift

u and s lift
ω are determined by maximizing the

correlation between A and Flift, the latter being defined by

Flift = (〈u〉slift
u

− V
) × 〈ω〉slift

ω
, (13)

in which the unimportant factor CL/(α + CM ) is omitted. The results are summarized in Table V.
The largest correlation coefficients are approximately {0.8,0.7,0.6} for β = {0.46,0.90,1.60}. They
were obtained by estimating U0 as the volume average of velocity over distances O(db) from the
interface and �0 as the volume average of vorticity over smaller volumes of liquid, more precisely
over distances O(δ), where δ is the thickness of a loosely defined “boundary layer,” estimated as
δ/db ∼ √

2/Reb [51], where Reb is the bubble Reynolds number defined as Reb = |〈u〉slift
u

− V|db/ν

(removing the time average in the definition of Reb does not affect the results). Incidentally, the
undisturbed fluid vorticity entering in the torque equation of a large solid particle in turbulence was
found to be well estimated by averaging vorticity in the same volume (up to distances ∼ δ from
the particle surface) [16]. The reasonable correlation between A and Flift when s lift

u and s lift
ω have

the values given in Table V is also illustrated in Fig. 6, in which typical joint PDFs between these
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FIG. 6. Componentwise joint PDFs (logarithmic grayscale) of the bubble acceleration A and
Flift = (〈u〉slift

u
− V) × 〈ω〉slift

ω
, for β = 0.46. The values of s lift

u and s lift
ω are given in Table V.
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two quantities are shown. It is worth mentioning that Flift is, on average, directed downward, which
indicates that the force associated with Flift acts, on average, against the bubble rise. This result is
compatible with the mechanisms known to explain the turbulence-induced reduction of rise velocity
of point bubbles, which will be summarized at the beginning of Sec. III C.

The same procedure is used for evaluating the liquid velocity U0 entering in the expression of the
drag force [fourth term on the right-hand side of Eq. (10)]. As CD is expected to depend (at least)
on a (properly defined) Reynolds number [48], we investigate the correlation between A and Fdrag,
where the latter is defined by

Fdrag = CD|〈u〉
s

drag
u

− V|(〈u〉
s

drag
u

− V
)
. (14)

For CD we use the empirical correlation of [26], which is valid for a spherical bubble in uniform
flow at any Reynolds number (the latter being based on the slip velocity magnitude |〈u〉

s
drag
u

− V|).
Whatever distance s

drag
u from the interface over which the liquid velocity is averaged, the correlation

coefficient between A and Fdrag is always found to be lower than 0.1. Using simpler expressions of
CD or including a correction for shear [48] does not increase this correlation. A possible reason for
this absence of correlation is the inadequacy of available expressions of CD in the case of strongly
nonuniform flows. Another explanation is the inappropriateness of the shell-averaging approach for
the drag term as modeled in Eq. (10). A third possibility is that the drag force might essentially
balance buoyancy and thereby contribute only marginally to the bubble acceleration fluctuations.
In any case, it must be stressed that Eq. (10) is not necessarily expected to hold in the present
configuration.

C. Preferential sampling

Experiments on the motion of small bubbles (db � η) in homogeneous isotropic turbulence
demonstrated that the rise velocity of bubbles is generally reduced by turbulence [40,41], hence
confirming predictions of point-bubble simulations [1–6]. This result is extended by our simulations
to the regime of large bubbles, as shown in Sec. III A. Two mechanisms retarding the rise of small
bubbles have been identified depending on β. For lower values of β, bubbles rise fast through the flow
and are transported toward downflow regions by lift forces, where their velocity is reduced owing to
the increased viscous drag and to the downward lift force induced by the bubble lateral motion [3].
For higher values of β, bubbles are trapped inside vortices [1,2,52] and preferentially accumulate
on the downflow side of eddies under the effect of the lift force [3–5], which further reduces their
rise velocity. According to these mechanisms, small bubbles should sample preferentially downflow
and/or vortical regions, features confirmed by numerical simulations of point bubbles [3,5,6]. An
important question to be answered is whether or not large bubbles sample the flow uniformly.

In point-bubble simulations, increased residence time in downflow regions and accumulation
in vortices can be easily quantified by averaging the liquid vertical velocity and enstrophy at the
bubble’s position. When the bubble is much larger than the smallest length scales of the flow, two
difficulties arise: First, the bubble might be larger than the regions of interest, and second, because
the presence of the bubble induces local disturbances in the ambient flow, this effect cannot be
directly disentangled from that of preferential sampling. The present proposal to characterize the
flow sampled by the bubble consists of three steps.

(i) The typical size of the regions of interest is first compared with db. If the former is smaller
than the latter, then the notion of residence of the bubble in these areas is meaningless.

(ii) A conditional averaging of the liquid flow in the vicinity of the bubble along its path is
performed.

(iii) The resulting statistics are compared with those obtained in the case where the bubble rises
steadily in still liquid.

If the results of (ii) and (iii) are sufficiently different (in magnitude or in sign) and if the
characteristic size of the sampled regions is large enough, then a qualitative estimate of the sole
contribution of preferential sampling can be inferred.
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FIG. 7. Simultaneous snapshots of the carrier flow in a plane passing through the bubble center: (a) vertical
component of velocity uz, (b) vorticity magnitude |ω|, and (c) sign of D (defined in the main text), used to
differentiate between strain-dominated (D < 0) and vorticity-dominated (D > 0) regions. Velocity and vorticity
are normalized by their mean values in the absence of the bubble. For clarity the bubble interior is colored in
white and the gas-liquid interface is depicted by a black line. Note that the single-phase flow obtained without
the bubble has similar characteristics.

1. Definition of the conditional averaging procedures

Information about the local flow around the bubble is collected by a conditional averaging of
the liquid flow in the vicinity of the bubble along its path. We introduce a polar coordinate system
(r,θ ) with its origin located at the bubble center of mass X and oriented along its instantaneous
(absolute) direction of motion V: Here r = |r|, where r = x − X is the position vector relative to the
bubble center of mass, and θ = arccos

( r
|r| · V

|V|
)

is the angle between r and the bubble instantaneous
velocity V. The average of any quantity q of interest conditioned on r and θ is calculated as follows
(T is the total duration of the simulation):

〈q〉r,θ = 1

T

∫ T

0

(
1

Vr,θ (t)

∫
V(r,θ,t)

q(x,t)dx
)

dt with Vr,θ (t) =
∫
V(r,θ,t)

dx, (15)

where V(r,θ,t) is the set of points (r ′,θ ′) such that r ′ ∈ [r − �x/2,r + �x/2] (with �x the grid
spacing) and θ ′ ∈ [θ − 1◦,θ + 1◦] at time t .

We also compute the average of q conditioned on the distance to the bubble surface ψ =
min(|x − Xinterface|), with Xinterface the set of points lying on the interface. This average is defined as

〈q〉ψ = 1

T

∫ T

0

(
1

Vψ (t)

∫
V(ψ,t)

q(x,t)dx
)

dt with Vψ (t) =
∫
V(ψ,t)

dx, (16)

where V(ψ,t) is the set of points located at a distance ψ ′ ∈ [ψ − �x/2,ψ + �x/2] from the
interface at time t .

2. Preferential sampling of the downflow regions

We first assess whether the bubble spends more time in downward velocity regions. As expected,
the characteristic size of these regions [blue areas in Fig. 7(a)] is found to be comparable to the
integral length scale L and is therefore larger than db (L ≈ 2db). The conditionally averaged field
〈uz〉r,θ is shown in Fig. 8 (top row) for increasing β from left to right. The profile of uz as a function
of the distance to the interface ψ is presented in Fig. 9(a); for comparison, the results obtained
without background turbulence are shown in the inset. A bubble rising in an otherwise quiescent
liquid pushes the liquid aside and drags some liquid with it; this results in an average upflow in
its immediate vicinity, which can be seen in the inset of Fig. 9(a). In the presence of a turbulent
carrier flow, this bubble-induced upflow is still present [it is clearly visible in Fig. 8 for β = 0.46,
which corresponds to the most buoyant (or fastest) bubble] and is responsible for the sharp increase
in 〈uz〉ψ with decreasing distance very close to the interface. We will therefore ignore this effect.
Farther from the interface, for β = 1.60, 〈uz〉ψ and 〈uz〉r,θ are approximately zero, meaning that
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FIG. 8. Average flow field around the bubble, conditioned on r and θ [see Eq. (15)] for increasing β from
left to right. The top row shows the vertical velocity, normalized by u0. The bottom row shows the sign of
the discriminant D used to differentiate between strain-dominated (D < 0) and vorticity-dominated (D > 0)
regions (the color scale is centered on the single-phase flow value). The arrows indicate the bubble instantaneous
direction of motion.

the bubble samples equally upflow and downflow regions. In contrast, for β = 0.46 and 0.90, the
vertical velocity is, on average, clearly negative around the bubble, thereby revealing a significant
preference of the bubbles for downward velocity regions.

3. Preferential sampling of the swirling regions

As previously mentioned, small bubbles for which β is large are known to be trapped in vortices.
Since vorticity is a quantity varying over small scales [as illustrated in Fig. 7(b)], preferential
sampling of vortical zones cannot be evidenced by averaging the vorticity around the bubble.
Alternatively, the topology of the flow can be characterized by the eigenvalues of the velocity
gradient tensor: If they are all real, the flow is locally dominated by strain, whereas if two of them
are complex conjugates, the flow is locally swirling. In incompressible flows these eigenvalues only
depend on Q and R, the second and third invariants of the velocity gradient tensor, respectively
[53,54]. It follows that the nature of the eigenvalues only depends on the sign of the discriminant
D = 27R2 + 4Q3: If D < 0 the three eigenvalues are real; if D > 0 two of them are complex
conjugates. It can be observed in Fig. 7(c), where we show an instantaneous snapshot of sgn(D) (the
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sign of the discriminant), that strain-dominated (D < 0) and vorticity-dominated (D > 0) regions
defined in that way are of size comparable to or larger than that of the bubble. As a consequence,
increased residence time of the bubble in swirling regions would be meaningful if one would define
them as areas of positive D.

The conditionally averaged field 〈sgn(D)〉r,θ is presented in Fig. 8 (bottom row) and the evolution
of 〈sgn(D)〉ψ with the distance to the interface ψ is shown in Fig. 9(b). Far from the bubble,
〈sgn(D)〉ψ is equal to 〈sgn(D)〉0 ≈ 0.3, the mean value of sgn(D) in the single-phase flow [loosely
speaking, 〈sgn(D)〉0 > 0 means that swirling regions occupy a larger volume than strain-dominated
regions in the base flow]. As the distance to the bubble surface reduces, an increase in 〈sgn(D)〉ψ
is observed, followed by a sharp decrease at distances smaller than one bubble radius. Since for
a single bubble rising in still liquid we obtain −1.0 � 〈sgn(D)〉ψ � −0.8 for all ψ and since this
sharp decrease occurs extremely close to the interface, we conjecture that this local reduction of
〈sgn(D)〉ψ results from the distortion of the flow by the bubble. Ignoring this effect, it can be noticed
that for β = 0.46, 〈sgn(D)〉ψ and 〈sgn(D)〉r,θ are not significantly modified near the bubble. This
means that the time spent by the bubble in regions dominated by strain and by vorticity is roughly
proportional to their respective volumes. The situation is different for β = 0.90 and 1.60. A large
red region around the bubble can be identified in Fig. 8 (bottom row), corresponding to 〈sgn(D)〉r,θ
greater than 〈sgn(D)〉0. This relative increase, also clearly visible in Fig. 9(b), indicates that the flow
sampled by the bubble is biased: For β = 0.90 and 1.60, the bubble preferentially resides in swirling
regions [sgn(D) = 1] of the flow. This effect is more pronounced for β = 1.60.

Finally, it can be stressed that the single-phase flow statistics of the quantities considered in
Figs. 8 and 9 are recovered at distances from the bubble surface comparable to 3db. Hydrodynamic
interactions are therefore expected to be important only if two bubbles are located within
approximately 6db from each other. In the present setup, the separation distance between periodic
neighbors is 11db and the bubble can safely be considered as isolated.

Overall, our results suggest that finite-size bubbles preferentially sample downflow regions when
β � 1, whereas they are primarily trapped in swirling zones when β � 1, as is the case for point
bubbles. The possible role played by the lift force in the biased sampling of the flow remains to be
clarified. Finally, we stress that the conclusions drawn in this section are subject to caution: Since
the effect of the bubble on the flow cannot be categorically disentangled from that of preferential
sampling, the proposed interpretation of the conditional averages is not unequivocal.
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IV. CONCLUSION

Interface-resolved numerical simulations of the rise of an isolated finite-size bubble in otherwise
homogeneous isotropic turbulence were carried out for different values of the turbulence intensity
β, defined as the root mean square of the liquid velocity fluctuations divided by the terminal velocity
of the bubble in still liquid. These simulations were run over a time period long enough to allow a
reasonable convergence of bubble Lagrangian and liquid Eulerian statistics.

The bubble kinematics was first characterized. Turbulence was found to drastically reduce its rise
velocity, a property already known for microbubbles. Acceleration statistics display some features
similar to those of fluid tracers, small inertial particles, and finite-size rigid objects. In particular,
the bubble horizontal acceleration distribution is well fitted by a log-normal distribution. The PDF
of the vertical component is negatively skewed, as a consequence of the preferential alignment
of the bubble velocity with gravity and of the negative asymmetry of its longitudinal acceleration
PDF. This latter property means that the bubble undergoes on average stronger deceleration than
positive acceleration and had been previously evidenced for fluid tracers only (in that case it is
related to the time irreversibility of turbulence). Then a physically relevant definition of the liquid
flow experienced by the bubble, as it enters in usual models of the liquid acceleration force and
of the lift force, was proposed. Our aim was not to propose a complete and accurate equation of
motion of the bubble, but rather to propose some reasonable estimates of the liquid velocity and
vorticity that enter in the definition of at least some of the typical forces known to act on inclusions
suspended in simple flows. We think this approach opens alternative ways for the design of models of
the dynamics of finite-size particles in turbulence, although it is still at a preliminary stage. Finally,
the present simulations show that the behavior of a bubble much larger than the Kolmogorov scale
is qualitatively similar to that of a small bubble in terms of preferential sampling of the turbulent
flow. In particular, conditional averaging of the liquid flow in the bubble vicinity suggests that when
β � 1 the bubble is more likely to reside in downflow regions of large extent, whereas when β � 1
the bubble has a preference for swirling zones. Underlying mechanisms, however, still need to be
elucidated.

The results presented in this paper were obtained at rather low Taylor Reynolds number and should
be confirmed for higher values of it. However, previous investigations carried out at similar Reλ have
shed some light on the interaction between finite-size solid objects and turbulence [16,17]. The good
qualitative agreement between our results and those known for small bubbles at Reλ = O(100) is
also very encouraging.

The above results were obtained using a turbulence forcing that consists in including a body
force proportional to liquid velocity in the momentum conservation equation. As a further validation
step, it would be desirable to reproduce the present simulations using a different forcing scheme. A
possible alternative is the random forcing of [55] used in, e.g., the simulation of interface-resolved
particle-laden flow [56].
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