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The nonlinear motion of cells subject to external
forces†

Aondoyima Ioratim-Uba, *a Aurore Loisy, a Silke Henkes ab and
Tanniemola B. Liverpool a

To develop a minimal model for a cell moving in a crowded environment such as in tissue, we

investigate the response of a liquid drop of active matter moving on a flat rigid substrate to forces

applied at its boundaries. We consider two different self-propulsion mechanisms, active stresses and

treadmilling polymerisation, and we investigate how the active drop motion is altered by these surface

forces. We find a highly non-linear response to forces that we characterise using drop velocity, drop

shape, and the traction between the drop and the substrate. Each self-propulsion mechanism gives rise

to two main modes of motion: a long thin drop with zero traction in the bulk, mostly occurring under

strong stretching forces, and a parabolic drop with finite traction in the bulk, mostly occurring under

strong squeezing forces. In each case there is a sharp transition between parabolic, and long thin drops

as a function of the applied forces and indications of drop break-up where large forces stretch the drop.

1 Introduction

Cells are highly adaptable and move themselves around in a
variety of different conditions and environments.1–3 This is
essential for biological functions such as wound repair,4 organ
development,5 and in pathological processes such as cancer
metastasis.6 Understanding individual cell motility and how it
affects collective cell migration is key to understanding these
processes. In particular, experiments show that cell–cell tug-
ging plays an important role in collective migration,7–9 and that
the force distribution within tissues may tell us something
about pathological behaviour.10,11

Cell motility is powered by the cytoskeleton, a dynamic
network of interlinking protein filaments inside the cell.12–14

These filaments can collectively form anisotropic liquid crystal-
line (LC) phases.15 There are a number of mechanisms by
which cell motility occurs.

The most studied is cell crawling,16–21 which combines the
treadmilling (polymerisation/depolymerisation) of cytoskeletal
actin filaments with strong adhesion to the substrate. In cells
the likely source of this type of motion is actin polymerisation
combined with acto-myosin contractility. Myosin II molecular
motors cause actin filaments to slide relative to each other22,23

and generate an active stress that can be contractile (positive)
or extensile (negative). A large class of hydrodynamic active
liquid models of these processes have been built, using active gel
theory,24–28 and also more detailed computational active nematic
LC models.29 Such models can be augmented by including
reaction-diffusion chemical feedback,30,31 and by adding
confinement.32,33 It has been shown that even in the absence
of actin treadmilling, spontaneous motion is still possible in LC
active matter systems.34–38

A minimal description of cell motility is thus provided by the
motion of a drop of anisotropic active LC matter. The possible
modes of a such a drop freely moving on a flat rigid substrate
have recently been classified by some of us in ref. 39. We
identified three modes: motion due to active stresses, motion
due to self-advection of active units along their direction of
orientation, and motion due to contact angle mismatch. All
modes are in principle present but one can consider regimes
when one mode dominates. We also showed that a drop
moving purely due to active stresses can do so without exerting
traction on the substrate.40 This type of motion is relevant to
fast migration in crowded environments,2,41 where cellular
adhesions are unstable at high strain rates.42

Crowded environments also lead to significant forces on cells.
However, many of the effects of external forces on cell-motility
and migration remain a mystery. These forces, either coming
from cell–ell tugging or from outside the cell, are important for
the functionality of cells and tissues. Furthermore, experiments
show that external forces can alter cell stiffness, induce migra-
tion, alter cell shape, induce remodelling, and alter cell
phenotype.43–45 Hence a better handle on them promises to have
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a significant impact on our understanding of multicellular
systems.

In this paper we study the dynamics of an active LC drop on
a flat surface under external forces applied at its two ends.
We model the anisotropy of the cytoskeleton in two ways,
corresponding to dynamics dominated by the first two modes
we identified in ref. 39. First, we probe an imposed LC director
field, and the active stress that this generates (active contractile/
extensile drop). The behaviour is controlled by the ratio A of the
activity to the splay-bend winding number of the LC director, as
measured from the surface to the top of the drop. Second, we
study self-advection of LC units along their direction of orientation
(active polymerising drop), whose behaviour is controlled by the
ratio W of the self-advection speed to the surface tension. We
classify the motion of the drop according to (1) the difference
between the forces on each end, i.e. whether it is being squeezed or
stretched and (2) the sum of the forces applied to its two ends, i.e. if
it is being pushed to the right (R) or to the left (L). For a passive
drop (A ¼ 0;W ¼ 0), we find parabolic shapes with simple sym-
metric behaviour: it moves to the right (or left) if it is pushed in the
right (or left) direction unless it is stretched above a critical
stretching force where it tends to break up into smaller droplets.
For both active drops, we find a much richer response to external
forces. The active contractile/extensile drop (A4 0;W ¼ 0) drop
moves to the R almost all the time except when the sum of forces is
large in the L direction and it is being squeezed. We also find a
wide variety of shapes. Parabolic shapes are observed only when the
drop is being squeezed. When the drop is being stretched, we find
(i) a double humped shape with a large hump at the front when the
sum of forces is strongly to the R, (ii) a flat pancake shape which
exerts almost no traction on the surface when the sum of forces is
small and (iii) droplet break up when the sum of forces is strongly
in the L direction. Our results hold for both contractile and
extensile drops as our equations of motion are invariant: changing
the sign of A, which flips the directions L 2 R, is equivalent to
either moving from contractile to extensile stresses or to flipping
the splay-bend winding number. The active polymerising drop
(A ¼ 0;W4 0) also moves to the R almost all the time, except
when the sum of forces is large in the L direction and it is being
squeezed. Again, parabolic drops are observed only when the drop
is being squeezed. When the drop is being stretched, we find (i) a
double humped shape with a large hump at the rear when the sum
of forces is strongly to the L, (ii) a flat travelator shape which exerts
almost no traction on the surface and (iii) droplet break up when

the sum of forces is strongly in the R direction. Changing the sign
ofW flips the directions L 2 R.

2 Model

We model a single cell as a two dimensional incompressible active
nematic drop moving on a flat rigid substrate subject to external
forces at its boundaries (Fig. 1(a)). This can be thought of as a
projection of the full 3d system to its average in 2d. We expect this
minimal model to capture a large part of the phenomenology in
3d but not the full behaviour such as splay in the lamellipodial
protrusion.29 We work in the (x̃,z̃) plane, where the drop is
characterised by the height h̃(x̃,t̃) of its free surface above the

substrate, and moves with velocity ~V. Note that variables with
tildes are dimension-full, while the un-tilded variables, which we
introduce for the lubrication approximation,51 are dimension-
less. We use the well established equations of active liquid crystal
hydrodynamics46,47 where the motion of the coarse grained
orientation of elongated units n = (cosy,siny), known as the
director, is coupled to the fluid velocity ũ inside the drop. The
velocity satisfies force balance equations at vanishing Reynolds
number:

qj~sij + f̃i = 0, (1a)

~sij = �p̃dij + Z(qiũj+ qjũi) � ~aninj, (1b)

where f̃ = f̃(x̃) is the external force per unit height, p̃ is the
pressure, ũ is the fluid velocity inside the drop, and ~aninj is the
active stress to leading order in a gradient expansion, which
represents the coarse-grained stresses generated when cytoskeletal
actin filaments slide relative to each other.48,49 Following,39,40 We
perform calculations in the lubrication approximation51 for which
changes in the height are much smaller than the width. In this
approximation, higher order gradients in the stress tensor can be
neglected because they scale with the ratio of the characteristic
length to the characteristic height of the drop, which is small. We
also work in the strong elastic limit, where the director relaxes
instantaneously to follow changes in the drop height h̃(x̃,t̃). In this
case, the dynamic equation for the director reduces to r2y ¼ 0.

For the active contractile/extensile drop, we anchor the
director parallel to the substrate, i.e. y(z̃ = 0) = 0, and parallel
to the free surface with an imposed winding, i.e. y(z̃ = h̃) = op+
arctan(h0). The winding number o A Z+ counts the number of
half turns of the director across the drop height (Fig. 2). At fixed

Fig. 1 (a) Cartoon of a crawling cell with slice removed. The configuration of the actin filaments is shown in red, and polymerising filaments are shown in
green. (b) Schematic showing a contractile/extensile drop on a flat surface being pushed/pulled at its boundaries by external forces f� (which can also
stretch or squeeze the drop), positive f+ or f�means that the force is directed to the right. The nematic director is denoted by n. (c) Schematic showing a
polymerising drop with external forces f�. In both cases, the boundaries are set to be at a height h0 above the solid substrate (z = 0).
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activity, the winding of the director, through its chirality,
breaks the left-right symmetry and sets the preferred direction
of motion. With no external forces, at positive activity (extensile
drop), the drop moves right for positive winding and left for
negative winding. There is no active contribution to the drop
velocity when o = 0. For the active polymerising drop, we
anchor the director parallel to the substrate i.e. y(z̃ = 0) = 0,
and parallel to the free surface with no imposed winding, i.e.
y(z̃ = h̃) = arctan(h0).

The external forces ~f~x ¼ ~fþd ~x� ~L
2

� �
þ ~f�d ~xþ ~L

2

� �
, f̃z̃ = 0 are

localised at the left and right drop borders, which leads to

boundary conditions on the pressure ~pð� ~L=2Þ ¼ ~p0 � ~f�, and

~p0 ¼ 2g~f= ~L0 is the Laplace pressure generated by the surface
tension g of an un-forced symmetric passive drop of length L̃0

and contact angle ~f. For an active drop with no external forces,
~p0 is a constant shift in the pressure. These boundary condi-
tions can be derived by integrating the x̃ component of (1a) with
respect to x̃ from L̃/2� D to L̃/2 + D and from�L̃/2� D to �L̃/2 +
D, where L̃ is the length of an arbitrary drop with D 4 0, and
taking the limit D - 0+ (see Section 1.2 of ESI ref. 50). In
addition to these boundary conditions, we use a free surface
boundary condition for the stress at the free surface: ~r�m = gkm

for the stress at the free surface, where g is the surface tension,
m is the unit normal vector (see Fig. 1(a)), and k = r�m is the
curvature of the free surface. The interaction of the drop with
the rigid substrate is modelled by a partial slip boundary
condition: ũx̃ = l̃u~sx̃Z̃/Z, where l̃u is a slip length.

We seek travelling wave solutions h̃ = h̃(x̃ � Ṽt) and work in
the reference frame of the drop. Mass conservation implies

ð ~h

0

~u~x þ ~wnx þ ~V
� �

d~z ¼ 0; (2)

where ũ is the fluid velocity inside the drop satisfying force
balance and incompressibility, and w̃n describes the additional
transport due to treadmilling self-advection at speed w̃ of active
units whose orientations are characterised by the director
n – the active units essentially propel themselves along their
own tangent. Since treadmilling self-advection only occurs near
substrates, we choose the form w̃ = w̃0e�h̃/l̃w, where w̃0 is a
characteristic self-advection speed and l̃w is the characteristic
height over which the self-advection term decays in the direction
normal to the substrate. This functional form was also used in
previous work that simulates crawling cells.29 Then, combining
mass conservation with p̃ = �gp̃00, which can be derived by taking
the leading order terms of the normal component of the stress
boundary condition at the drop free surface, we obtain a non-
linear ODE for h̃. After non-dimensionalisation, we retain the
salient dimensionless parameters activity A, advection speedW,
and drop velocity V,

A ¼ ~a ~Lx

4poge2
; W ¼ Z~w0

ge3
; V ¼ Z ~V

ge3
(3)

and also height h = h̃/eL̃x, coordinates x = x̃/L̃x, z = z̃/eL̃x, slip
length lu = l̃u/eL̃x, polymerisation height lw = l̃w/eL̃x, pressure

p0 ¼ ~p0 ~Lx=ge, contact angle f ¼ ~f=e, and forces f� = f̃�L̃x/ge,

Fig. 2 (a) Schematic phase diagram for a passive drop. The light blue region corresponds to RP(L) right-parabola left-moving drops, green corresponds
to LP(R) left-parabola right-moving drops, while droplet breakup DB is grey. (b) Schematic phase diagram for a contractile/extensile drop. New phases
include the RP(R) right-parabola right-moving state (dark blue), the DH(R) double-hump right-moving (coral) and the PC(R) pancake right-moving
(yellow) states. (c) Schematic phase diagram for a polymerising drop. The RP(L), LP(R), and RP(R) phases are present, while the DH(R) double-hump,
right-moving is replaced by the TM(R) tread-milling drop right-moving (coral), and the PC(R) pancake right-moving is replaced by the TL(R) travelator
right-moving (yellow). Characteristic drop shapes are superimposed in white.

Fig. 3 Left: Droplet height profiles at F ¼ 0 and A ¼ 0. Here, p0 = 0.9226
and O = 1. Right: Drop length L as a function of S.
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where L̃x is a characteristic length scale in the x direction. Then
the drop shape satisfies the ODE

h000
1

3
h3 þ luh

2

� �
þ gðhÞ ¼ Vh; (4)

where gðhÞ ¼ Ah2 for the contractile/extensile drop and gðhÞ ¼
Wlw 1� exp �h=lwð Þð Þ for the polymerising drop. The drop velo-
city V is a functional of h:

V ¼
ðL
2

�L
2

gðhÞdx
h3

3
þ luh2

þ F
" #, ðL

2

�L
2

dx
h3

3
þ luh

" #
; (5)

where we have introduced push F ¼ fþ þ f� (positive means
push right and negative means push left). We also use the
quantity S ¼ � fþ � f�ð Þ, which we term squeeze, in the analysis
of our results (positive means squeeze, and negative means
stretch). We set the height of the drop at its boundary to a finite
h0 = h(�L/2), which represents a finite contact area with neigh-
bouring cells or with obstacles. The drop length L is determined
as part of the solution by requiring that the drop have constant

volume O:
Ð L=2
�L=2hdx ¼ O. The tangential traction exerted by the

drop on the substrate is sxz|z= 0 = hh0 0 0. In terms of h alone, using

(4), the traction can be written sxzjz¼0¼ ðV � gðhÞ=h
�

1

3
hþ lu

� �
.

The dimensionless parametersA,W, V, F , and S all represent a
ratio of stress to surface tension, and as we will show below, the
interesting active phenomenology appears when they are all
Oð1Þ. We translate these results back to biological parameters
at the end, allowing us to make predictions for cell speeds and
stresses in addition to cell shapes.

2.1 Numerics

We obtained solutions to (4) by numerically solving the time
dependent version of the force balance equation, qth+ qxI = 0,

where I ¼ h000
1

3
h3 þ luh

2

� �
þ gðhÞ � Vh, which represents over-

damped dynamics of the height evolution. Solving the time
dependent problem (starting from a known initial condition)
allows us to iteratively evaluate the integrals in eqn (5) and gives
us the potential to investigate the temporal dynamics of the
drop. The steady state of the time evolution, qth = 0, is
equivalent to eqn (4).

We used an implicit method, a variant of the Crank–Nichol-
son algorithm, using finite difference coefficients to approx-
imate the derivatives. The algorithm starts with an initial
condition that has the correct values of h at the boundaries and
advances in time until steady state. The algorithm advances in time
according to hn+1

i /Dt + Ii(h
n+1
1 ,. . .,hn+1

N )/2 = hn
i /Dt + Ii(h

n
1,. . .,hn

N)/2,
where hn

i is the discretised drop height evaluated at the ith spatial
point at the nth time step, Ii(h

n
1,. . .,hn

N) is the discretised version of I
as defined above evaluated at the ith at the nth time step. The time
stepping in the algorithm is adaptive, meaning that the time step
is increased as steady state approaches.39 In the numerics, we
apply both height and pressure boundary conditions (converted to
boundary conditions on h00) because the time evolution is a fourth
order PDE:

h(�L/2) = h0, h00(�L/2) = �f� � p0. (6)

The boundary conditions on h00 are required for consistency
with force balance, however we are in principle free to change
the boundary conditions on h. In all simulations lu = 0.05, h0 =
0.1, O = 1, p0 = 0.9226, which corresponds to a contact angle of 1
for a free passive drop, o = 1, and the spatial step size is 0.002.
The value of the slip length was chosen to be consistent with
ref. 39. Changing the slip length has different effects on the
contractile/extensile mode and polymerisation mode: increasing
the slip parameter at a fixed polymerisation speed decreases
drop speed because motility via polymerisation requires strong
adhesion.29,39 The opposite is true for the contractile/extensile
drops – increasing the slip length increases drop speed.39

3 Results

The phase diagrams in Fig. 2(a)–(c) schematically show the
regimes of drop shapes and motility that we find for the passive
A ¼ 0;W ¼ 0, the contractile/extensile case A ¼ 1;W ¼ 0 case,
and the polymerising case A ¼ 0;W ¼ 1. Fig. 4 and 5 provide
full results for drop velocity, drop shapes and substrate
traction.

3.1 Passive drop

We begin with a passive drop A ¼ 0;W ¼ 0 (Fig. 2(a)), both to
provide a reference, but also to illuminate the limit when surface
tension dominates over activity. Then all dimensionless para-
meters are small and eqn (4) can be approximated by h0 0 0(x) = 0,
which is the equation for the passive drop with a parabolic
solution. Moving to finite F and S now, we observe two phases
of motion, both with finite traction in the bulk: a left-moving
right-parabola RP(L) for Fo 0 and a right-moving left-parabola
LP(R) for F4 0. These passive drops are qualitatively close in
shape to an upside down parabola but are asymmetric with a
first moment of h that is non-zero (characteristic shapes shown
in Fig. 2(b)). Squeezing the drop S4 0 in general maintains the
parabolic shape and increases the effective surface tension.

The passive solutions are antisymmetric along the push/pull
F axis, and they move with opposite velocities that increase as
the drop is squeezed (see Fig. 4(a)). All drops become longer and
thinner as we move along the stretch/squeeze axis from squeeze
to stretch, eventually reaching the region of drop breakup (DB),
where the drop free surface reaches h o 0. For passive drops at
F ¼ 0, there are no steady solutions in the DB region that satisfy
volume conservation. Consider a passive drop with A ¼ 0 and
F ¼ 0. The equation for drop height becomes

h000
1

3
h3 þ luh

2

� �
¼ 0 (7)

and has the solution

h ¼ �1
2

p0 þ
S
2

� �
x2 � L2

4

� �
þ h0; (8)

where we have used h(�L/2) = h0 and h00 = f+�p0. The drop length

L is determined by the volume constraint
Ð L=2
�L=2hdx ¼ O4 0.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
0 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
B

ri
st

ol
 o

n 
12

/1
0/

20
22

 7
:3

6:
50

 P
M

. 
View Article Online

https://doi.org/10.1039/d2sm00934j


9012 |  Soft Matter, 2022, 18, 9008–9016 This journal is © The Royal Society of Chemistry 2022

The drop length diverges at S ¼ �2p0 � �1:99 (p0 is chosen so
that the contact angle of a free passive drop is one), and goes
negative for So � 2p0. This means that volume conservation is

not truly satisfied even though the condition
Ð L=2
�L=2hdx ¼ Oþ�

is satisfied mathematically by a negative L. This is clear in the
left plot in Fig. 3, where h o 0 for So � 2p0 and thusÐ L=2
�L=2hdxo 0, with |L| being the actual length of the drop.

3.2 Active contractile/extensile drop

With contractility, as shown in shown in Fig. 2(b), we find, in
addition to RP(L), LP(R) and DB, a right-moving right-parabola
RP(R) state with finite traction, and then two long and thin
states (see length in Fig. 4(c)), the right-moving double hump
DH(R) state, which has a small dip followed by a prominent
frontal hump, and the right-moving pancake PC(R) drop, which
is flat almost everywhere with the average height %h o h0.

Both DH(R) and PC(R) drops have zero traction in the bulk
(Fig. 4(d)). In,40 equal contact angles were imposed at the
boundaries for all drops (rather than variable external force),
and it was found that the tractionless DH(R) shapes emerged

when the dimensionless active contractile stress A �4 0:8. Here,

these tractionless drops can be found in the DH(R) region of
the phase plane along the line of equal contact angle (dotted
line, Fig. 4(b)–(d)). The drop partitions itself into a small region
with large free surface curvature, and a larger region where the
free surface is flat. There is large curvature at these humps, and
the remaining 50–90% of the drop is flat. At lower activity A ¼
0:3; A ¼ 0:1 (see ESI ref. 50, Fig. S2), we find DH(R) and PC(R)
shapes at large enough stretch (So 0), which shows that
stretching can work together with activity to deform the drop.
Therefore, in the DH(R) and PC(R) drops, we see the competi-
tion between active contractile/extensile stress plus stretch, and
surface tension: activity plus stretch wants to deform the drop,
and surface tension wants the free surface to be flat.

The symmetry about the push/pull axis is broken because
the drop is motile at zero force due to the imposed winding
o = 1 (Fig. 4(b)). Both the RP(L) and LP(R) regions become smaller
with activity and are pushed towards the top-left (push-left/squeeze)
and top-right (push-right/squeeze) of the phase plane respectively
by the emergence of the RP(R) phase, which largely occupies
the middle squeeze region that lies between RP(L) and LP(R).

Fig. 4 Contractile/extensile drops. (a) Velocity of a passive drop. (b) Velocity of a contractile/extensile drop. (c) Length of a contractile/extensile drop.
(d) Traction between the drop and the substrate integrated over 70% of the drop length:

Ð
sxzjz¼0dx. Each square represents a single simulation and its

colour corresponds to the legend. The solid line in each plot is an isoline corresponding to zero velocity, the dashed line is an isoline where the first moment

of h,
Ð L
0 xhdx, vanishes, and the dotted line is an isoline corresponding to the drop having equal contact angles. (e) 2nd moment and velocity V across the

RP(R)/RH(R) boundary, indicating a first order transition. (f) Stable numerical solutions for h (top) and the corresponding traction sxz|z=0 (bottom) for

A ¼ 1; S ¼ 2, (g) A ¼ 1; F ¼ 0, (h) Vo 2� 10�4. The colour of each curve matches the colour of its phase in Fig. 2(c). The legend labels are coordinates in
the (F , S) phase plane.
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The stretch region of the phase plane is populated by DH(R)
and PC(R), as well as DB. The region containing DH(R) and
PC(R) shares a phase boundary with RP(R) determined by the
drop length, and the distribution of substrate traction. The
second moment of h (with drop length scaled to unity), which is
a measure of the spread of the drop also determines the same
phase boundary – see ESI.† The phase boundary is indicated in
the schematic Fig. 2, as determined from the data in Fig. 4(c)
and (d). Strikingly, the transition between RP(R) and DH(R)/
PC(R) is sharp suggesting a first order transition.

The behaviour of the second moment and the drop velocity
across the phase boundary is shown in Fig. 4(e). There is a jump
in both quantities going from RP(R) to DH(R) and also from
DH(R) to RP(R). The change in drop shape induced by moving
from RP(R) to DH(R) and back to RP(R) at constant squeeze
S ¼ 2 is shown if Fig. 4(f). The drop shape changes continu-
ously within the DH(R) region but changes sharply at the phase
boundary. There are also indications of bi-stability in the
region: we have obtained two stable solutions for two different
initial conditions at the same point in the phase plane (see ESI
at ref. 51, Fig. 3). In contrast, the transition between DH(R) and

PC(R) is smooth and happens under increased stretching for
constant push (Fig. 4(g)).

3.3 Active polymerising drop

The polymerising drop, in addition to RP(L), LP(R), RP(R), and
DB has two long and thin states (see length in Fig. 5(b)), the
right-moving treadmilling state TM(R), which has a prominent
hump at the rear followed by a small dip and a protrusion at
the front, and the right-moving travelator, TL(R) which is flat
almost everywhere, with the average height %h o h0. The TM(R)
shape is a solution to the 2D equation for a free drop driven by
actin polymerisation for large enough self-advection velocity.39

Similar shapes with flat frontal protrusions have been observed
experimentally for motile keratocytes.16,19 Both TM(R) and
TL(R) drops have zero traction in the bulk Fig. 5(d). In ref. 39,
where equal contact angles (rather than variable force) were
imposed, the TM(R) shapes emerged when the dimensionless
polymerisation speed W �4 0:2, showing that relatively small

polymerisation speeds can generate stresses large enough to
deform the drop. Again, there is large curvature at the humps,

Fig. 5 Polymerising drops. (a) Length of a passive drop. (b) Length of a polymerising drop. (c) Velocity of a polymerising drop. (d) Traction between the
drop and the substrate integrated over 70% of the drop length:

Ð
sxzjz¼0dx. Each square represents a single simulation and its colour corresponds to the

legend. The solid line in each plot is an isoline corresponding to zero velocity, the dashed line is an isoline where the first moment of h,
Ð L
0 xhdx, vanishes,

and the dotted line is an isoline corresponding to the drop having equal contact angles. (e) Jump in length and velocity going from parabolic to flat.
(f) Stable numerical solutions for h (top) and the corresponding traction sxz|z=0 (bottom) forW ¼ 1; F ¼ 0, (g) Stable numerical solutions for h (top) and

the corresponding traction sxz|z=0 (bottom) forW ¼ 1; S ¼ �1, (h) Vo 2� 10�4. The colour of each curve matches the colour of its phase in Fig. 2(c). The
legend labels are coordinates in the (F , S) phase plane.
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which take up 10–50% of the drop length, and the remaining
drop is flat. At much lower polymerisation speed, W ¼ 0:01,
(see ESI ref. 50), we find TM(R) and TL(R) shapes at large
enough stretch (So 0), which again shows that that stretching
can amplify the effect of activity to deform the drop. Therefore,
in the TM(R) and TL(R) drops, we see the competition between
stress generated by polymerisation plus stretch, and surface
tension: activity plus stretch wants to deform the drop, and
surface tension wants the free surface to be flat.

Again, the symmetry about the push/pull axis is broken
because the drop is motile at zero force, this time due to
treadmilling self-advection,W. The RP(L) region becomes smal-
ler with self-advection, and is pushed to the top-left (push-left,
squeeze), while the LP(R) region becomes larger with self-
advection and invades the left half of the squeeze region. The
RP(R) phase emerges as a thin strip between RP(L) and LP(R). DB
for the polymerising drop occurs in the bottom-right (push-right,
stretch) rather than in the bottom-left (push-left, stretch) as is
the case for the contractile/extensile drop. The stretch region of
the phase plane is populated by TM(R) and TL(R), as well as DB.
The region containing TM(R) and TL(R) shares a phase boundary
with both RP(R) and LP(R) determined by the second moment of
h as a measure of the spread of the drop, and the distribution of
substrate traction. The phase boundary is indicated in the
schematic Fig. 2(c), as determined from the data in Fig. 5(b)
and (d). Strikingly, the transition between RP(R)/LP(R) and
DH(R)/PC(R) is sharp suggesting a first order transition. The
behaviour of the second moment and the drop velocity across
the phase boundary is shown in Fig. 5(e). There is a jump in both
quantities going from RP(R)/LP(R) to TM(R)/TL(R). The change
in drop shape induced by moving from LP(R) to TL(R) is shown
Fig. 5(f). The drop shape changes continuously within the TM(R)/
TL(R) region but changes sharply at the phase boundary. In
contrast, the transition between TM(R) and TL(R) is smooth.

4 Discussion and parameter estimates

The drastic changes in drop shape that we have observed are
not associated with changes in direction of motion. Both the
contractile/extensile drop and the polymerising drop remain as
right-parabolas when their velocity is reversed at the RP(L)/
RP(R) boundary. Stationary drop profiles are shown in Fig. 4(h).
All drops we have considered here are fastest for strong push and
strong squeeze, towards the top corners of the phase plane. The
contractile/extensile drop slows down dramatically on entering
the DH(R) region and continues to slow down as it enters the
PC(R) region and approaches DB, however it does not stop before
reaching DB. In contrast, the polymerising drop locally speeds
up as it approaches the TM(R) region and continues to speed up
as it enters the TL(R) region and approaches DB. We can also
compute the active power generated by moving the drop against
applied forces, showing that when the drop moves opposite the
applied force, it acts as a motile engine (see Fig. 6).

We now estimate dimensionful parameter values for our
model to provide biological context and make predictions. In

our active simulations we looked at A between 0.3 and 1.
Assuming a surface tension of 0.01 mN m�1,52 a length scale of
25 mm, and a drop inverse aspect ratio e = 0.1, we can use (3) to
calculate ~a to be between 0.02 pN (mm)�2 and 0.05 pN (mm)�2.
This is comparable to a bottom-up estimate of activity parameter ~a
from the force produced by myosin motors cross-linking and
walking across actin filaments, which we treated as rods in water.
We estimated the force produced by each rod to be the Stokes
drag on a rod, Frod E 2pLZv, where L is the length of an actin
filament, which we take to be 1 mm, Z is the viscosity of water,
which is 8.9 � 10�4 Pa s, and v is the myosin walking speed,
which we take to be 200 nm s�1.53 Using these numbers we
estimate the force produced by a single actomyosin bundle to
be 5 nN. We take the density of actin monomers in a cell to be
100 mg mL�1,54 the mass of an actin monomer to be 42 kDa,55 the
volume of a cell to be 10�15 m3,56 and the number of actin
monomers to per filament to be 370,57 which gives 4 � 105 actin
filaments per cell. Multiplying this number by the Stokes drag gives
a total force of Fcell = 5 � 10�10 N. Since disordered actomyosin
networks do not convert microscopic forces efficiently, we estimate
the active force scale to be 0.01–0.1 Fcell/(Lcell

2), where we have used
Lcell E 25 mm,56 so ~a E 0.08–0.8 N m�2 = 0.08–0.8 pN (mm)�2.

Similarly, we can calculate w̃0 and Ṽ via eqn (3) using our
assumed value of surface tension, and using the viscosity of a
semi-flexible polymer gel, which we take to be 3 � 10�1 Pa s.58

We find w̃0 between 10 nm s�1 and 30 nm s�1, comparable to the
range of polymerisation speeds, 7 nm s�1 to 170 nm s�1, for
motile cells.59 Our model predicts cell speeds around 10 nm s�1.
We use values of push and squeeze ranging from 0.04 pN (mm)�2

to 0.4 pN (mm)�2, and our model predicts a stall force of around
60 pN (assuming a contact area of 2 � 25 (mm)2).

5 Conclusion

In summary, we have studied the dynamics of a model cell
(an active LC drop) on a flat surface under external forces
applied at its two ends. Our phase diagrams in terms of the
sum and differences of these forces and show how cell shape
and motile behaviour is nonlinearly modulated by external
forces. Our analysis has focused on two mechanisms of motility
driven by contractile/extensile active stresses and actin poly-
merisation. Both mechanisms give rise to the same parabolic

Fig. 6 Left: Power (net force � velocity) for a passive drop. Middle: Power
for an active contractile/extensile drop. Right: Power for an active poly-
merising drop.
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phases (RP(L), LP(R), RP(R)) under squeeze, and different phases
under stretch: DH(R) and PC(R) for the contractile/extensile
drop, and TM(R) and TL(R) for the polymerising drop.

These unexpectedly strong shape and motility changes under
applied forces should help us understand similar changes in
experiment. Epithelia change from columnar (tall) to squamous
(flat) shapes under tension, and there is a tradeoff between active
traction with the substrate and at the apical (top) surface.
Similarly, in the mesenchymal–epithelial transition from flat or
humped, strongly motile mesenchymal cells slow down and
become taller when squeezed in by other cells.1,5 The changes
in shape that we have observed here can be exploited to control
behaviour of different cell phenotypes and tissue remodelling. In
particular, the relation that we have derived between cell-
substrate traction and forces, and between cell velocity and
traction could be investigated by measuring the cell-substrate
force using e.g. traction force microscopy and pushing/pulling
the cell with a micropipette.
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